
Paper read at ISFC 33
San Pablo, Brasil, July 2006

Rule Types in a Systemic Functional Grammar:
An XML Definition of the Cardiff Lexicogrammar Generator*

Víctor M. Castel
Consejo Nacional de Investigaciones Científicas y Técnicas

Universidad Nacional de Cuyo
Mendoza, Argentina

vcastel@lab.cricyt.edu.ar

ABSTRACT: The objective of this paper is to provide an XML
definition of the structure of the Cardiff Lexicogrammar
Generator (CLGG) rules so that grammar development is
facilitated and enhanced. At present, given its inherent intricacy
and high degree of delicacy, only Robin Fawcett and Gordon
Tucker can “safely” manipulate versions of CLGG (Micro, Mini,
Midi, etc.). One crucial reason for this state of affairs, though not,
of course, the only one, is the significant complexity of rule
writing. The paper then addresses the problem of constructing an
XML schema to account for the well-formedness and validity of
CLGG rules.

Key words: Cardiff Grammar Generator XML schema; Cardiff
Grammar Generator rule typology; Text generation.

RESUMEN: El objetivo de este trabajo es proveer una definición
XML de la estructura de las reglas del Generador de la Léxico-
Gramática de Cardiff (GLGC) que facilite y potencie el desarrollo
de gramáticas. Actualmente, debido a la complejidad inherente y
el alto grado de delicadeza de las reglas, sólo Robin Fawcett y
Gordon Tucker pueden manipular “con seguridad” versiones de la
GLGC (Micro, Mini, Midi, etc.). Un razón crucial de este estado
de cosas, si bien no la única, es el gran esfuerzo de la escritura de
reglas. El trabajo se ocupa entonces del problema de construir un
esquema XML que pueda dar cuenta de la buena formación y la
validez de la reglas de la CLGC.

Palabras clave: Esquema XML del Generador de la Gramática de
Cardiff; Tipología reglar del Generador de la Gramática de
Cardiff; Generación de textos.

mailto:vcastel@lab.cricyt.edu.ar"

Paper read at ISFC 33
San Pablo, Brasil, July 2006

Víctor M. Castel : Rule Types in a Systemic Functional Grammar : 2

1. Introduction
The Cardiff Lexicogrammar Generator, GENESYS (henceforward, CLGG), in its
computationally implemented Mini version, is a set of rules capable of generating
linguistic representations like the structure of Figure 1: (Fawcett et al. 1993,
Fawcett 2000, 2004a; Castel 2006a, b)


[entity, spoken, consultative, situation, congruent_situation, independent, information, giver,
negative, unmarked_negative, present_trp, validity_unassessed_present,
unmodulated_present, no_pastness_from_trp, action, one_role_process, agent_only,
simple_agent_only, activeness_ago, working, period_marked, agent_only_unmarked,
a_subject_theme_unmarked, outsider_sth, count_sth, singular_sth, simple_singular_sth,
time_position_unspecified, not_co_ordinated_with_a_previous_situation, simplex_situation,
dominant, strongly_dominant, no_contrastive_newness_sit]
Cl

St
||

S/Ag
[entity, spoken, consultative, thing, congruent_thing, stereotypical_thing, outsider,
cultural_classification, no_ad_hoc_description, physical_thing,
physical_thing_specified, living_thing, creature, human_cr, whole_human,
human_specified_by_stage_and_gender, adult, man_c, count_cc, singular_cc,
particularized_singular, sing_not_selected_from_by_quantity, recoverable_cc,
not_co_ordinated_with_a_previous_thing, simplex_thing]
ngp

dd
the

h
man

O/PdX
is+n’t

M
work+ing

MN
MT

K
1+

E
||

OUTPUT STRING: || the man isn’t working MT 1+ ||

Key:  = variable ranging over genre elements; Cl = Clause; St = Starter; S = Subject; Ag =
Agent; ngp = nominal group; dd = deictic determiner; h = head; O = Operator; PdX =
Period Auxiliary; M = Main Verb; MN = Mood-bearing New; MT = Mood-bearing Tonic;
K = Key; E = Ender.

Figure 1: Example of linguistic representation generated by CLGG.

CLGG rules are organized into two components: the semantic component and the
form component. The semantic component contains System Network Rules
(SNRs), and Same Pass Preference Resetting Rules (SPRs). The form component
contains Realization Rules (RRs) proper and Graphological Rules (GRs).

Paper read at ISFC 33
San Pablo, Brasil, July 2006

Víctor M. Castel : Rule Types in a Systemic Functional Grammar : 3

SNRs and SPRs jointly construct selection expressions, i.e. sets of semantic
features. Cf. the expressions in square brackets dominated by “” and “S/Ag” in
Figure 1. The task of RRs is to define form representations, i.e. tree structures
which account for syntactic, lexical, and punctuational (or intonational) properties
of linguistic units realizing a given selection expression. Cf. for example the
syntactic unit “ngp” which realizes the element “S/Ag” which is associated with
an appropriate selection expression; notice that the unit “ngp” dominates the
elements “dd” and “h” which in turn dominate the lexical items “the” and “man”,
respectively. The task of GRs is to take care of graphological realization.

At a very abstract level, CLGG rules involved in the generation of linguistic repre-
sentations like the instance illustrated in Figure 1 are all implications which can be
represented as in (1i), read as in (1ii), and interpreted as in (1iii):

(1i) p  q,

(1ii) if p, then q,

(1iii) if p is true, then carry out q,

where p and q are variables ranging over conditions and consequences,
respectively. Condition p can be a single semantic feature, or a disjunction of
semantic features, or a conjunction of semantic features. Consequence q can be
a(n) (conjunction of) operation(s), and/or a(n) (conjunction of) implication(s) like
(1i).

The purpose of this paper is not to establish how the truth value of p is determined
nor to specify how carry out q is computationally performed.1 The objective is
rather more modest but perhaps more useful for grammar development, namely: to
provide an XML definition of the structure of CLGG rules so that grammar
writing is facilitated and enhanced. At present, given its inherent intricacy and
high degree of delicacy, only Robin Fawcett and Gordon Tucker can “safely”
manipulate versions of CLGG (Micro, Mini, Midi, etc.). One crucial reason for
this state of affairs, though not, of course, the only one, is the complexity of rule
writing as illustrated by the rule sample (1)-(20) in §2. Thus, the paper addresses
neither CLGG rule function nor rule interaction. It does not address the problem
of output construction either. It simply addresses the problem of constructing an
XML schema to account for the well-formedness and validity of CLGG rules.2

2. CLGG Rule Sample

The rule types presented in this paper have been defined inductively from the
appropriate CLGG text files as specified in Fawcett (2004a). Here follows an
extract from this source which highlights instances of the different rule classes:3

Paper read at ISFC 33
San Pablo, Brasil, July 2006

Víctor M. Castel : Rule Types in a Systemic Functional Grammar : 4

System Network Rules4

(1) sn1: entity --> MODE And ENTITY_TYPE.

(2) sn2: MODE --> 70% spoken (0.1) Or 30% written (0.2).

(3) sn33: (giver Or new_content_seeker Or proposal_for_action_by_addressee) --
> POLARITY.

(4) sn50: ((relational Or action Or mental Or environmental Or influential) And
(information Or proposal_for_action)) --> 10% period_marked (10.1) Or 90%
not_period_marked.

(5) sn62: (time_position_presented And (proposal_for_action Or (future_trp And
(no_pastness_from_trp Or past_from_trp)))) --> 45%
time_position_recoverable_from_present_unit (sp20_4, 20.4) Or 45%
deictic_future_time_position (sp20_4, 20.6) Or 10%
recoverable_future_time_position (sp20_4, 20.61) Or 0% others.

(6) sn71: (following_situation_is_in_separate_information_unit And spoken) -->
70% unmarked_co_ordination_int_sit (99.7) Or 5%
co_ordination_with_dominance_int_sit (99.71) Or 15%
co_ordination_with_reservations_int_sit (99.72).

(7) sn74: another_co_ordinated_situation --> (99% one_following_situation (19.1)
Or 1% two_or_more_following_situations (19.2)) And (95%
another_additive_situation (19.81) Or 5% another_alternative_situation (19.61)).

(8) sn274: (agent_only_unmarked Or affected_only_unmarked Or
(agent_unmarked And agent_subject_theme) Or (agent_unmarked And
affected_covert) Or (affected_unmarked And affected_subject_theme) Or
(agent_covert And affected_unmarked) Or at_carrier_unmarked) -->
a_subject_theme_unmarked.

Same Pass Preference Resetting Rules
(9) sp1_1: congruent_situation --> written --> for same_pass prefer sn12 [99.98%
information, 0.02% proposal_for_action] And sn14 [99.9% giver, 0.1% seeker,
0% confirmation_seeker].

(10) sp60: congruent_thing --> fills At And {on_previous_pass}
no_ad_hoc_description --> apply carrier_attribute_agreement_subrule.

Same Pass Preference Resetting Subrules
(11) carrier_attribute_agreement_subrule --> {on_previous_pass} (interactant Or
human_tc Or human_ssth Or whole_human Or name_of_person) --> for
same_pass prefer human_tc And human_ssth And
BASIC_TYPICALLY_HUMAN_PREF_BLOCK And
TYPICALLY_HUMAN_CC_PREF_BLOCK, {on_previous_pass}
(non_human_tc Or non_human_cr Or non_human_ssth) --> for same_pass prefer
non_human_tc And non_human_cr And non_human_ssth, {on_previous_pass}

Paper read at ISFC 33
San Pablo, Brasil, July 2006

Víctor M. Castel : Rule Types in a Systemic Functional Grammar : 5

(singular_performer or singular_addressee Or singular_tc Or singular_ssth Or
singular_loc_rth Or singular_pos_rth Or singular_cc Or
pl_with_singular_quantity) --> for same_pass prefer singular_performer And
singular_addressee And singular_tc And singular_ssth And singular_loc_rth And
singular_pos_rth And singular_cc And pl_with_singular_quantity,
{on_previous_pass} (plural_performer Or plural_addressee Or plural_tc Or
plural_ssth Or plural_loc_rth Or plural_pos_rth Or plural_cc Or
pl_with_plural_quantity) --> for same_pass prefer plural_performer And
plural_addressee And plural_tc And plural_ssth And plural_loc_rth And
plural_pos_rth And plural_cc And pl_with_plural_quantity, {on_previous_pass}
(mass_tc Or mass_ssth Or mass_loc_rth Or mass_pos_rth Or mass_cc) --> for
same_pass prefer mass_tc And mass_ssth And mass_loc_rth And mass_pos_rth
And mass_cc, {on_previous_pass} (performer or addressee) --> for same_pass
prefer sn78 [0.1% interactant, 99.9% outsider], {on_previous_pass}
token_classification --> for same_pass prefer sn78 [0.1% interactant, 99.9%
outsider] And sn136 [0.1% recoverable_thing, 94.9% cultural_classification, 5%
name_of_thing].

Realization Rules
(12) 0.2: written --> for any_re_entry prefer written.

(13) 1.1: congruent_situation --> Cl, S @ 33, spoken And
not_co_ordinated_with_a_previous_situation And fills Z --> St @ 3, St > ||, not
at_being --> M @ 100, (information And (at_being Or unmarked_passive Or
future_trp Or validity_assessed Or retrospective_from_trp Or period_marked Or
negative Or (seeker And not ncs_theme_on_a_subject_theme_sought_r) Or
confirmation_seeker Or contrastive_newness_on_polarity)) --> apply
Operator_placement_subrule, (information And (negative Or confirmation_seeker
Or (seeker And not ncs_theme_on_a_subject_theme_sought_r) Or
contrastive_newness_on_polarity)) --> apply do_support_subrule,
(simplex_situation Or final_co_ordinated_situation) --> E @ 250, apply
Ender_subrule, (spoken And (simplex_situation Or final_co_ordinated_situation))
--> no_contrastive_newness_sit --> MN @ 200, MN > MT, K @ 201.

(14) 1.33: request --> O @ 31, for S prefer thing And congruent_thing And
stereotypical_thing And interactant And addressee, for S re_enter_at entity.

(15) 10.1: period_marked --> (information And not (future_trp Or
validity_assessed Or retrospective_from_trp Or past_from_trp)) --> PdX by O,
apply finite_be_forms, (future_trp Or validity_assessed Or retrospective_from_trp
Or past_from_trp Or proposal_for_action) --> PdX @ 96, PdX > be,
unmarked_passive --> PaX >+ +ing.

Realization Subrules
(16) Ender_subrule --> spoken --> E > ||, written --> unmarked_mood_wr --> E >
., (seeker Or confirmation_seeker Or request) --> E > ?, (fun_mood_wr Or
enthusiastic_mood_wr) --> E > !.

Paper read at ISFC 33
San Pablo, Brasil, July 2006

Víctor M. Castel : Rule Types in a Systemic Functional Grammar : 6

Block Preference Subrules
(17) BASIC_SING_OUTSIDER_PREF_BLOCK --> singular_tc And
singular_loc_rth And singular_pos_rth And singular_ssth And sn157 [99.999%
singular_cc, 0.001% plural_cc, 0% class_of_count_thing].

Graphological Rules
(18) gr5: +ing --> e --> apply ing_subrule_1, Else apply ing_subrule_4.

Graphological Subrules
(19) ing_subrule_1 --> be --> delete +, ing sfx_is_written_as ing, Else apply
ing_subrule_1_1.

(20) ing_subrule_4 --> VC --> apply ing_subrule_4_1, Else delete +, ing
sfx_is_written_as ing.

As this rule sample suggests, CLGG is a text which has been written using a
special vocabulary and a special syntax. Being a structured text, its underlying
“grammar” can be captured in terms of an XML schema as shown in §§3-4.5

3. CLGG Rule Classes
CLGG rules can be classified in accordance with the following diagram:6

Figure 2: CLGG rule classes.

The Choice Compositor in the diagram is used to indicate that any given CLGG
rule belongs in one of the rule options. For examples of each class, see (1)-(20)
above, where (1) is a SystemNetworkRuleA, (2) a SystemNetworkRuleB, and (3)
a SystemNetworkRuleC.

Paper read at ISFC 33
San Pablo, Brasil, July 2006

Víctor M. Castel : Rule Types in a Systemic Functional Grammar : 7

All the rule classes share the property of being defined by the complex type
RuleType, i.e. a sequence of a RuleCode element, an Implication element and a
RuleEnder element.

Figure 3: Rule elements.

The RuleCode is a regular expression which varies depending on the rule class. If
it is a System Network Rule, the RuleCode is defined by the regular expression
“sn\p{N}+[:]\p{Zs}”. If it is a Same Pass Preference Resetting Rule, the
RuleCode is defined by the regular expression “sp\p{N}+([_]\p{N}+)?[:]\p{Zs}”.
If it is a Realization Rule, the RuleCode is defined by the regular expression
“\p{N}+([.]\p{N}+)?[:]\p{Zs}”. If it is a Graphological Rule, the RuleCode is
defined by the regular expression “gr\p{N}+[:]\p{Zs}”. In (21), the RuleCode is
underlined, the Implication is in italics, and the RuleEnder is in bold.

(21) sn2: MODE --> 70% spoken (0.1) Or 30% written (0.2).
The Implication element is defined by the complex type ImplicationType, which
is a sequence of a Condition, the ImplicationOperator, a Consequence1, and an
optional sequence of the ElseOperator and a Consequence2.

Figure 4: The structure of implications.

Example (22) illustrates the Condition element with the underlined expression, the
Consequence1 element with the expression in italics, and the Consequence2
element with the expression in bold.

(22) gr5: +ing --> e --> apply ing_subrule_1, Else apply ing_subrule_4.

Paper read at ISFC 33
San Pablo, Brasil, July 2006

Víctor M. Castel : Rule Types in a Systemic Functional Grammar : 8

3.1. Conditions
The Condition element varies depending on the rule class, but all the variations
are defined as restrictions on the complex type ConditionType:

Figure 5: Condition choices.

The complex type ConditionType defines the CLGG potential for defining rule
conditions. Notice that according to this definition a Condition can be (1) a
sequence of an optional SystemNetworkPass, an optional NegationOperator, and a
SemanticFeature or a RealizationFeature or a GraphologicalFeature, (2) a
SystemName, (3) a sequence of an optional SystemNetworkPass and a
ConjunctiveCondition, or (4) a sequence of an optional SystemNetworkPass and a
DisjunctiveCondition. The expressions in italics in (23) illustrate the Condition
element:

(23a) sn4: SPOKEN_TENOR --> 10% formal (0.32) Or 70% consultative (0.33)
Or 20% casual (0.34).

(23b) sn8: situation --> 100% congruent_situation (sp1_1, 1.1) Or 0%
reified_situation.

(23c) sn21: (written And giver) --> 0.1% fun_mood_wr Or 99.9%

Paper read at ISFC 33
San Pablo, Brasil, July 2006

Víctor M. Castel : Rule Types in a Systemic Functional Grammar : 9

unmarked_mood_wr.

(23d) sn33: (giver Or new_content_seeker Or proposal_for_action_by_addressee)
--> POLARITY.

(23e) sp60: congruent_thing --> fills At And {on_previous_pass}
no_ad_hoc_description --> apply carrier_attribute_agreement_subrule.

The character strings realizing the elements SystemNetworkPass,
NegationOperator, SemanticFeature, RealizationFeature, GraphologicalFeature,
and SystemName are as specified in the corresponding annotations.

A DisjunctiveCondition is defined by the complex type
DisjunctiveConditionType. See Figure 6 below. A DisjunctiveCondition, then, is a
sequence of an optional NegationOperator, a LeftRoundBracket, a
SemanticFeature or a RealizationFeature or a GraphologicalFeature or a sequence
of a LeftRoundBracket, a ConjunctiveDisjunct (of type
ConjunctiveConditionType; see below) and a RightRoundBracket, a
DisjunctiveOperator, and a sequence of an optional NegationOperator, a
SemanticFeature or a RealizationFeature or a GraphologicalFeature or a sequence
of a LeftRoundBracket, a ConjunctiveDisjunct (of type
ConjunctiveConditionType; see below) and a RightRoundBracket, and a
RightRoundBracket. For an example, cf. the expression in italics in (23d).

A ConjunctiveCondition is defined by the complex type
ConjunctiveConditionType. See Figure 7 below.

A ConjunctiveCondition, then, is a sequence of an optional NegationOperator, a
LeftRoundBracket, a SemanticFeature or a RealizationFeature or a
GraphologicalFeature or a sequence of a LeftRoundBracket, a
DisjunctiveConjunct (of type DisjunctiveConditionType; see above) and a
RightRoundBracket, a ConjunctiveOperator, and a sequence of an optional
NegationOperator, a SemanticFeature or a RealizationFeature or a
GraphologicalFeature or a sequence of a LeftRoundBracket, a
DisjunctiveConjunct (of type DisjunctiveConditionType; see above) and a
RightRoundBracket, and a RightRoundBracket. For an example, cf. the
expression in italics in (23c).

Each rule class picks up from ConditionType, by restriction, a specific subset of
possible conditions. Thus, System Network Rule conditions do not allow for the
following elements: SystemNetworkPass, NegationOperator, RealizationFeature,
and GraphologicalFeature (and this is true also within the elements
ConjunctiveCondition and DisjunctiveCondition). Realization Rules do not allow
for the elements GraphologicalFeature and SystemName. Graphological Rules do
not allow for the elements SystemNetworkPass, SemanticFeature,
RealizationFeature and SystemName.

Paper read at ISFC 33
San Pablo, Brasil, July 2006

Víctor M. Castel : Rule Types in a Systemic Functional Grammar : 10

Figure 6: The structure of disjunctive conditions.

Paper read at ISFC 33
San Pablo, Brasil, July 2006

Víctor M. Castel : Rule Types in a Systemic Functional Grammar : 11

Figure 7: The structure of conjunctive conditions.

Paper read at ISFC 33
San Pablo, Brasil, July 2006

Víctor M. Castel : Rule Types in a Systemic Functional Grammar : 12

3.2. Consequences
Both Consequence1 and Consequence2 (cf. Figure 4) are of type
ConsequenceType:

Figure 8: The structure of consequences.

Thus, these elements are sequences made up of an Operation or an Implication
(see ImplicationType above), a ConsequenceLinker, and an Operation or an
Implication (see ImplicationType above).

The complex type OperationType defines the Operation element:

Figure 9: Operation classes.

Paper read at ISFC 33
San Pablo, Brasil, July 2006

Víctor M. Castel : Rule Types in a Systemic Functional Grammar : 13

ChooseAndInsert, EnterSystem, EnterConjunctionOfChoicePoints, and InsertGate
are System Network Rule operations.

The Operation ChooseAndInsert is defined as a sequence of a sequence of an
AssociatedProbability element, a SemanticFeature element and an optional
AssociatedRules element, followed by a sequence of a DisjunctiveOperator
element and a sequence of an AssociatedProbability element, a SemanticFeature
element and an optional AssociatedRules element (cf. the expression in italics in
(24)):

Figure 10: The structure of the ChooseAndInsert operation.

(24) sn4: SPOKEN_TENOR --> 10% formal (0.32) Or 70% consultative (0.33)
Or 20% casual (0.34).
The Operation EnterSystem is defined by the complex type EnterSystemType (cf.
the expression in italics in (25)):

Figure 11: The structure of the EnterSystem operation.

Paper read at ISFC 33
San Pablo, Brasil, July 2006

Víctor M. Castel : Rule Types in a Systemic Functional Grammar : 14

(25) sn1: entity --> MODE And ENTITY_TYPE.

The Operation EnterConjunctionOfChoicePoints is defined by the complex type
EnterConjunctionOfChoicePointsType (cf. the expression in italics in (26)):

Figure 12: The structure of the EnterConjunctionOfChoicePoints operation.

See complex type ProbFeatRulesType above for the element ProbFeatRules.

(26) sn74: another_co_ordinated_situation --> (99% one_following_situation
(19.1) Or 1% two_or_more_following_situations (19.2)) And (95%
another_additive_situation (19.81) Or 5% another_alternative_situation (19.61)).
The Operation InsertGate is defined by the global element InsertGate (cf. the
expression in italics in (27)):

Figure 13: The structure of the InsertGate operation.

(27) sn274: (agent_only_unmarked Or affected_only_unmarked Or
(agent_unmarked And agent_subject_theme) Or (agent_unmarked And
affected_covert) Or (affected_unmarked And affected_subject_theme) Or
(agent_covert And affected_unmarked) Or at_carrier_unmarked) -->
a_subject_theme_unmarked.

Paper read at ISFC 33
San Pablo, Brasil, July 2006

Víctor M. Castel : Rule Types in a Systemic Functional Grammar : 15

ForSamePassPrefer is an operation of Same Pass Preference Resetting Rules
which is defined by the complex type ForSamePassPreferType (cf. the expression
in italics in (28) below):

Figure 14a: The structure of the ForSamePassPrefer operation.

The element RuleToAlter is in turn defined by the complex type
RuleToAlterType:

Figure 14b: The structure of the ForSamePassPrefer operation.

And the element ProbabilityFeaturePair is defined as follows:

Paper read at ISFC 33
San Pablo, Brasil, July 2006

Víctor M. Castel : Rule Types in a Systemic Functional Grammar : 16

Figure 14c: The structure of the ForSamePassPrefer operation.

(28) sp1_1: congruent_situation --> written --> for same_pass prefer sn12
[99.98% information, 0.02% proposal_for_action] And sn14 [99.9% giver, 0.1%
seeker, 0% confirmation_seeker].

XFillsTriggeringElementY, XIsLocatedAt, XIsConflatedWithY, XIsExposedAsY,
SuffisOfXIsY, ForAnyReEntryPrefer,
ForSameOrXParticipantRoleOrElementPrefer, ForXRe-enterAtEntity, and
ApplySubrule are Realization Rule operations.

The global element XfillsTriggeringElementY defines the corresponding
Operation (cf. the expression in italics in (29)):

Figure 15: The structure of the XFillsTriggeringElementY operation.

(29) 60: congruent_thing --> ngp.

The following element defines the Operation XisLocatedAt (cf. the expressions in
italics in (30)):

Figure 16: The structure of the XisLocatedAt operation.

(30) 90: minor_relationship_with_thing --> pgp, p @ 7, cv @ 8.

The Operation XisConflatedWithY is defined by the following element (cf. the

Paper read at ISFC 33
San Pablo, Brasil, July 2006

Víctor M. Castel : Rule Types in a Systemic Functional Grammar : 17

expressions in italics in (31)):

Figure 17: The structure of the XIsConflatedWithY operation.

(31) 6.482: affected_covert --> Ag by S, not proposal_for_action -->
agent_unmarked --> apply Ag_preferences_subrule, agent_sought --> apply
Ag_sought_preferences_subrule, for Ag re_enter_at entity, C @ 120, Af by C.

The following element defines the Operation XisExposedAsY (cf. the expressions
in italics in (32)):

Figure 18: The structure of the XisExposedAsY operation.

(32) Ender_subrule --> spoken --> E > ||, written --> unmarked_mood_wr --> E >
., (seeker Or confirmation_seeker Or request) --> E > ?, (fun_mood_wr Or
enthusiastic_mood_wr) --> E > !.
The Operation SuffixOfXIsY is defined by the following element (cf. the
expressions in italics in (33)):

Figure 19: The structure of the SuffixOfXIsY operation.

Paper read at ISFC 33
San Pablo, Brasil, July 2006

Víctor M. Castel : Rule Types in a Systemic Functional Grammar : 18

(33) 98.2: contrastive_newness_on_process --> CN by M, spoken --> M >+ /CT,
written --> M >+ (caps).
The complex type ForAnyReEntryPreferType defines the Operation
ForAnyReEntryPrefer (cf. the expression in italics in (34)):

Figure 20: The structure of the ForAnyReEntryPrefer operation.

(34) 0.31: very_formal --> for any_re_entry prefer very_formal.
The Operation ForSameOrXParticipantRoleOrElementPrefer abbreviates two
separate operations, namely: ForSameParticipantRoleOrElementPrefer (cf. the
expressions in italics in (36)) and ForXElementOrParticipantRolePrefer (cf. the
expression in italics in (35)), and it is defined by the following complex type:

Figure 21: The structure of the
ForSameOrXParticipantRoleOrElementPrefer operation.

For the definition of RuleToAlter, see complex type RuleToAlterType in Figure

Paper read at ISFC 33
San Pablo, Brasil, July 2006

Víctor M. Castel : Rule Types in a Systemic Functional Grammar : 19

14b above.

(35) 6.20051: changing_as_such --> M > change, apply r, (affected_unmarked Or
affected_only_unmarked) --> for Af prefer sn244 [95% artefact, 5%
natural_object].

(36) 19.61: another_alternative_situation --> & @ 4, & > or,
one_following_situation --> for same_pr_or_element prefer
final_alternative_situation, two_or_more_following_situations --> for
same_pr_or_element prefer another_alternative_situation.

DeleteX, XisWrittenAsY, DoubleFinalLetter, and ApplySubrule are
Graphological Rule operations.

The Operation DeleteX is defined as follows (cf. the expression in italics in (37)):

Figure 22: The structure of the DeleteX operation.

(37) gr1: +n’t --> delete +.

The following element defines the Operation XisWrittenAsY (cf. the expression
in italics in (38)):

Figure 23: The structure of the XIsWrittenAsY operation.

(38) ing_subrule_1_1 --> ie --> delete +, delete ie, ing sfx_is_written_as ying, Else
apply ing_subrule_2.

Paper read at ISFC 33
San Pablo, Brasil, July 2006

Víctor M. Castel : Rule Types in a Systemic Functional Grammar : 20

The Operation DoubleFinalLetter is defined by the following element (cf. the
expression in italics in (39)):

Figure 24: The structure of the DoubleFinalLetter operation.

(39) ing_subrule_8 --> c --> delete +, ing sfx_is_written_as king, Else
double_final_letter, delete +, ing sfx_is_written_as ing.

The Operation ApplySubrule is defined as follows (cf. the expressions in italics in
(40)-(42)):

Figure 25: The structure of the ApplySubrule operation.

(40) 2.12: at_carrier_unmarked --> apply Ca_preferences_subrule, for Ca
re_enter_at entity.

(41) r --> (information Or (proposal_for_action And (period_marked Or
unmarked_passive))) --> apply rvs_subrule_1.

(42) sp60: congruent_thing --> (fills At And {on_previous_pass}
no_ad_hoc_description) --> apply carrier_attribute_agreement_subrule.

The element ForXRe-enterAtEntity defines the corresponding Operation (cf. the
expression in italics in (43)):

Figure 26: The structure of the ForXRe-enterAtEntity operation.

(43) 1.33: request --> O @ 31, for S prefer thing And congruent_thing And
stereotypical_thing And interactant And addressee, for S re_enter_at entity.

Paper read at ISFC 33
San Pablo, Brasil, July 2006

Víctor M. Castel : Rule Types in a Systemic Functional Grammar : 21

4. CLGG Subrule Classes
Except for System Network Rules (A, B, and C), all other CLGG rules have
associated subrules. The essential difference between rules and subrules is that the
latter lack a RuleCode (cf. Figure 3), and the first Condition of the Implication
element is a single feature realized by an appropriate regular expression
containing, in most cases, the expression “subrule”.

4.1. Same Pass Preference Resetting Subrules

Figure 27: The structure of Same Pass Preference Resetting Subrules.

Example (44), which is an abbreviation of (11) above, illustrates this class of
subrule:

(44) carrier_attribute_agreement_subrule --> {on_previous_pass} (interactant Or
human_tc Or human_ssth Or whole_human Or name_of_person) --> for
same_pass prefer human_tc And human_ssth And
BASIC_TYPICALLY_HUMAN_PREF_BLOCK And
TYPICALLY_HUMAN_CC_PREF_BLOCK, {on_previous_pass}
(non_human_tc Or non_human_cr Or non_human_ssth) … .

Paper read at ISFC 33
San Pablo, Brasil, July 2006

Víctor M. Castel : Rule Types in a Systemic Functional Grammar : 22

4.2. Realization Subrules

Figure 28: The structure of Realization Subrules.

Example (45) illustrates this subrule class:

(45) Operator_placement_subrule --> (giver Or (seeker And
ncs_theme_on_a_subject_theme_sought_r)) --> O @ 35, (seeker And not
ncs_theme_on_a_subject_theme_sought_r) Or confirmation_seeker) --> O @ 31.

Paper read at ISFC 33
San Pablo, Brasil, July 2006

Víctor M. Castel : Rule Types in a Systemic Functional Grammar : 23

4.3. Preference Block Subrules (subrules of both Same Pass Preference
Resetting Rules and Realization Rules)

Figure 29: The structure of Preference Block Subrules.

Example (46) illustrates this class of subrule:

(46) BASIC_SING_OUTSIDER_PREF_BLOCK --> singular_tc And
singular_loc_rth And singular_pos_rth And singular_ssth And sn157 [99.999%
singular_cc, 0.001% plural_cc, 0% class_of_count_thing].

4.4. Graphological Subrules

Figure 30: The structure of Graphological Subrules.

Paper read at ISFC 33
San Pablo, Brasil, July 2006

Víctor M. Castel : Rule Types in a Systemic Functional Grammar : 24

Example (47) illustrates this class of subrule:

(47) s_subrule_1 --> y --> (ay Or ey Or oy Or uy) --> delete +, s sfx_is_written_as
s, Else delete +, delete y, s sfx_is_written_as ies, Else delete +, s sfx_is_written_as
s.

5. Conclusions

In its current state of development, the Cardiff Grammar has no means to help
linguists to write generation-oriented grammar versions based on CLGG, for the
“grammar” of CLGG rules is nowhere but in the minds of Robin Fawcett and
Gordon Tucker. As shown in §§2-4, CLGG rules are highly structured texts. As
such, their well-formedness and validity can be guaranteed by providing an XML
definition of them. This is precisely the issue that this paper has addressed and
solved. I have provided an XML schema of CLGG rule classes from the point of
view of their structural properties. Among other useful applications, this schema
can certainly be used to design a specific rule editor which should significantly
facilitate the writing of Cardiff like grammars.

REFERENCES
Víctor M. Castel. 2006a. An Implementation of GENESYS: The Cardiff Grammar
Generator. Cardiff, Wales/Mendoza, Argentina: Cardiff University and
CONICET/UNCUYO. For access permission, write to rp.fawcett@virgin.net.

----- 2006b. The Cardiff Grammar Generator Online Help. Cardiff, Wales /
Mendoza, Argentina: Cardiff University and CONICET/UNCUYO. Available at
http://www.cricyt.edu.ar/institutos/incihusa/ul/webhelp/Victor_M._Castel.htm.

----- 2006c. Cardiff Grammar Generator Rule Classes. MSWord file of the
Cardiff Grammar Generator Rule Classes XML Schema. Available at
http://www.cricyt.edu.ar/institutos/incihusa/ul/webhelp/Victor_M._Castel.htm.

----- 2006d. An XML Schema of the Cardiff Grammar Generator Rule Classes.
XMLSPY5 “.xsd” file of the Cardiff Grammar Generator Rule Classes. Available
at http://www.cricyt.edu.ar/institutos/incihusa/ul/webhelp/Victor_M._Castel.htm.

----- 2005. "Determinación dinámica de valores de verdad de condiciones de re-
glas de generación de textos". In: Víctor M. Castel. Comp. 2005. Desarrollo, im-
plementación y utilización de modelos para el procesamiento automático de tex-
tos. Mendoza: Editorial de la Facultad de Filosofía y Letras, Universidad Nacional
de Cuyo. Available at http://ffyl.uncu.edu.ar/?id_rubrique=197&id_sector=42.

Robin P. Fawcett. 2004a. The Mini-Grammar of GENESYS Version 5. Cardiff:
Computational Linguistics Unit, Cardiff University.

----- 2004b. Realizing Meaning in Intonation and Punctuation in English: The
GENESYS Model. Communal Working Papers 19. Cardiff: Computational
Linguistics Unit, Cardiff University.

----- 2000. A theory of syntax for systemic functional linguistics. Amsterdam: John
Benjamins.

mailto:rp.fawcett@virgin.net"
http://ffyl.uncu.edu.ar/?id_rubrique=197&id_sector=42

Paper read at ISFC 33
San Pablo, Brasil, July 2006

Víctor M. Castel : Rule Types in a Systemic Functional Grammar : 25

Robin P. Fawcett, Gordon H. Tucker, y Yuen Q. Lin. 1993. How a systemic
functional grammar works: The role of realization in realization. In: Helmut
Horacek & Michael Zock. Eds. 1993. New concepts in natural language
generation. London: Pinter.

* I am grateful to Ana M. Miret for valuable comments on various aspects of the paper.

1 For an algorithm which takes care of the assignment of truth values to CLGG rule conditions, see
Castel (2005).

2 In the sense “well-formedness” and “validity” are understood in XML.

3 No definition is provided here for intonation rules, for they have not been specified yet as rules
proper in the available source (Fawcett 2004b), i.e. the Mini version of CLGG has an algorithm for
this class of rules but there is no formal declarative statement of them.

4 I use “Or” and “And” instead of “/” and “&”, respectively, in the definition of System Network
Rules to maximize uniformity with Realization Rules. I have also adapted and modified other
minor aspects of the original specification in Fawcett (2004a).

5 The XML definition of CLGG rules given in §§3-4 below has been constructed with XMLSPY5
Professional Edition.

6 For a more complete definition of the CLGG rules discussed in this paper, see Castel (2006c, d),
available at http://www.cricyt.edu.ar/institutos/incihusa/ul/webhelp/Victor_M._Castel.htm.

