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Abstract
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1 Introduction

This paper deals with the following linear optimization problem

P : Sup hc�; xi

s.t.
ha�t ; xi � bt; t 2 T;

x 2 Q;

(1)

where T is an arbitrary index set, possibly in�nite, Q is a convex cone in a real
Banach space X, c� and a�t ; t 2 T , belong to the topological dual of X; de-
noted by X�; and bt; t 2 T; are real numbers. P is an in�nite-dimensional op-
timization problem with possibly in�nitely many linear inequality constraints
(depending on the cardinality of T ).

Problems of this type have relevant applications in sciences and technology. A
number of them are reported in [1] and [17], where the reader can �nd com-
prehensive overviews of in�nite-dimensional and semi-in�nite optimization,
respectively. See also [3], which is con�ned to the so-called continuous problem
(when the index set T is a compact Hausdor¤ space and the functions t 7! a�t
and t 7! bt are continuous).

We assume that Q is closed and that the set fa�t ; t 2 Tg � X� is �xed,
arbitrary, and bounded for the dual norm in X� de�ned by

kx�k := sup fhx�; xi : kxk � 1g :

(If no confusion arises, we use the same notation k � k for the given norm in X
and the corresponding dual norm in X�.)

As a consequence of the boundedness assumption and the generalized Cauchy-
Schwarz inequality we have that, for every x 2 X,

ha�(:); xi 2 `1(T );

where `1(T ) is the real Banach space of all bounded functions on T with the
supremum norm

p 2 `1(T )! kpk1 := sup
t2T

jptj:

The subscript 1 in the norm symbol will be omitted if no confusion arises.
When the index set T is compact and the functions a�(:) are continuous on T ,
we may substitute `1(T ) by the space C(T ) of continuous functions over a
compact set.

By means of the linear mapping A : X ! `1(T ) de�ned as Ax := ha�(:); xi;
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the problem P can be reformulated as

P : Sup hc�; xi

s.t.
Ax � b;

x 2 Q:

(2)

Here b =
�
bt
�
t2T
: Thanks to the boundedness of fa�t ; t 2 Tg the linear

operator A is bounded, and so continuous, as

kAk = sup
kxk�1

kAxk = sup
kxk�1

sup
t2T

jha�t ; xij � sup
kxk�1

sup
t2T

ka�tk kxk = sup
t2T

ka�tk :

If X is re�exive, associated with each t 2 T there exists some xt 2 X such that
kxtk = 1 and satisfying ha�t ; xti = ka�tk ; this fact leads to kAk = supt2T ka�tk :

The problem P is called primal as it has an associated dual problemD de�ned
as follows:

D : Inf
D
�; b

E

s.t.
A�� 2 c� �Q�;

� � 0;

where � 2 `1(T )�; A� : `1(T )� ! X� is the adjoint operator of A, i.e.

hA��; xi = h�;Axi ; for every � 2 `1(T )� and every x 2 X;

and Q� is the dual cone of Q

Q� := fq� 2 X� : hq�; qi � 0 for all q 2 Qg:

This dual problem falls in the duality model introduced by Kretschmer in
[24] and it is developed here at an intermediate level of generality between
the approaches in Du¢ n [14] and Borwein [2]. Anderson and Nash have given
a detailed account of this theory in [1, Chapter 3]. In fact our pair of dual
problems P and D are particular instances of problems IP and IP � in [1,
pp. 38 and 39], respectively. Here A is a continuous linear mapping between
X and `1(T ) with respect to the norm topologies, but Proposition 5 in [1,
p. 37] applies to guarantee that our dual pair falls in the model studied in
that book [1, Section 3.3]. Actually, the theory in [1, Section 3.3] is built in a
re�exive context (dual pairs of vector spaces), but the re�exivity is required
only in order to guarantee that the dual of the dual problem IP �; i.e. IP ��, is
identical to IP . Therefore, the re�exivity assumption has no in�uence in the
arguments used in the proofs when this second dual IP �� is not involved.
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The dual objects we study in the paper are the associated feasible sets

FP :=
n
x 2 X : Ax � b and x 2 Q

o
;

and
FD := f� 2 `1(T )� : A�� 2 c� �Q� and � � 0g ;

the optimal values

vP := sup
x2FP

hc�; xi and vD := inf
�2FD

D
�; b

E
;

and the optimal sets

fx 2 FP : hc�; xi = vPg and f� 2 FD :
D
�; b

E
= vDg;

respectively.

P (D) is said to be consistent if its feasible set is nonempty; similarly, it is
said to be solvable if its optimal set is nonempty.

The aim of this paper is to provide characterizations of the Lipschitzian sta-
bility of feasible solutions for both the primal and the dual problem in this
in�nite-dimensional setting. We do not require X to be re�exive. For the
primal problem we describe a formula for the associated Lipschitz modulus
(Theorems 7 and 8) and for the dual problem we give bounds for its Lipschitz
exact bound (Theorems 18 and 19); the situation for the dual is much more
involved than the case of the primal problem. In doing this we use standard
tools from variational analysis as the notion of coderivative and its norm,
and their relationship with the exact bound of the Lipschitzian moduli (see
de�nitions in Sections 2 and 3).

Stability is a paradigmatic issue in optimization, and many users prefer to
handle a good-stable solution instead of an optimal-unstable one. We refer
the reader to [9] for the study of qualitative stability (formalized through cer-
tain semicontinuity properties of the feasible and the optimal set mappings) in
semi-in�nite optimization (i.e. X is the Euclidean space and T an in�nite set),
and to [11] and [12] for this type of analysis in in�nite-dimensional program-
ming. In relation to the quantitative perspective (via Lipschitzian properties),
some relevant references are [4] - [8], etc. In some of these papers special
attention is payed to the case in which only continuous perturbations of cer-
tain particular coe¢ cients are considered. The recent survey [25] provides a
panoramic of what has been done in the last �fteen years from both quali-
tative and quantitative perspectives. The closest references, from which this
paper receives inspiration, are Cánovas et al. [8], and Io¤e and Sekiguchi [20],
as well as the very recent preprint [19].

The paper is organized as follows. After Section 2, devoted to notation and
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basic de�nitions, Section 3 provides some duality results concerning our dual
pair. Section 4 describes brie�y the primal and dual feasible set mappings,
whereas in the second part of the paper (Sections 5 and 6) we study the
stability of the feasible set mappings associated with P and D when pertur-
bations of the objective function hc�; xi and of the terms in right-hand side of
the constraints, i.e. of bt; t 2 T; are considered. The stability analysis is done
via the Lipschitz-like property of the involved mappings.

2 Notation and basic de�nitions

For a given subset 
 � Z of a Banach space Z; we denote with conv
 and
cone
 the convex hull of 
 and the conical convex hull of 
; respectively.
From the topological side, we use the symbols w and w� to indicate the weak
and the weak� topology, respectively, and w-lim and w�-lim represent the weak
and the weak� topological limits, respectively. int 
 and cl 
 are the interior
and the closure of 
 with respect to the norm topology; respectively; clw 

stands for the closure in the weak topology; and cl�� is the closure in the
weak� topology of a given subset � � Z� in the dual space. We also make use
of the property that for convex sets, the norm and the weak closures coincide.

Furthermore for any bz 2 
 � Z; with 
 convex, we denote by N(bz; 
) the
normal cone to 
 at bz which is given by

N(bz; 
) = fz� 2 Z� : hz�; z � bzi � 0 for all z 2 
g : (3)

Along this paper we shall consider di¤erent dual pairs fZ;Z�g; Z being en-
dowed with the original topology of the norm, meanwhile Z� is endowed with
the weak� topology. In particular it is well known (see, for instance, [15]) that
there is an isometric isomorphism between `1(T )� and the space

ba(T ) =
n
� : 2T ! R: � is bounded and additive

o
;

satisfying the relationship

h�; pi =
Z
T
pt �(dt) with p = (pt)t2T :

The dual norm on `1(T )� is the total variation

� 2 `1(T )� ! k�k := sup
A�T

�(A)� inf
B�T

�(B):

It is obvious that if � � 0 we have k�k = �(T ); since �(;) = 0:
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Given an arbitrary set S, we denote by R(S)+ the set of all � = (�s)s2S, with
0 � �s 2 R, for all s 2 S; and such that �s 6= 0 for at most �nitely many
s 2 S:

On the multivalued mapping side, given a set-valued mapping M : Z � Y
we denote its domain, graph and inverse mapping by

domM := fz 2 Z :M(z) 6= ;g ,

gphM := f(z; y) 2 Z � Y : y 2M(z)g ;

M�1(y) := fz 2 Z : (z; y) 2 gphMg ;

respectively.

If Z and Y are normed spaces,M is said to be Lipschitz-like around (bz; by) 2
gphM (locally Lipschitz-like in [28]) with modulus ` � 0 if there exist neigh-
borhoods U of bz and V of by such that

M(z) \ V �M(u) + ` kz � ukBY ; for all z; u 2 U; (4)

where BY is the closed unit ball in the space Y: The in�mum of such moduli `0s
over all possible combinations f`; U; V g satisfying (4) is called the exact Lip-
schitzian bound ofM around (bz; by) and is denoted by lipM (bz; by) ; it admits
the following representation:

lipM (bz; by) = lim sup
(z;y)!(bz;by)

dist(y;M(z))
dist(z;M�1(y))

;

where inf ; = 1 (and so, dist(x; ;) = 1); and we adopt the convention
0=0 := 0 and1=1 :=1:We put lipM (bz; by) =1 ifM is not Lipschitz-like
around (bz; by) : Observe from (4) that ifM is Lipschitz-like around (bz; by), thenbz 2 int(domM).

This Lipschitz-like property of a mappingM : Z � Y between Banach spaces
is equivalent to the metric regularity property and also to the linear openness
of the inverse mappingM�1 : Y � Z. (See [28] and references therein).

The exact Lipschitzian bound ofM around (bz; by) satis�es the following rela-
tion

lipM (bz; by) = fsurM�1(by; bz)g�1;
where surM�1(by; bz) is the so-called rate of surjection (openness) of M�1

around (by; bz); de�ned as follows (see, for instance, [20, p.256])
surM�1(by; bz) = lim inf

(y;z;�)!(by;bz;0+) 1� sup
n
r � 0 : z + rBZ �M�1(y + �BY )

o
;
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where BZ and BY are the closed unit balls in Z and Y; respectively. When
surM�1(by; bz) = 0, one gets lipM (bz; by) = +1, andM is not Lipschitz-like
around (bz; by) :
Finally, given M : Z � Y and (bz; by) 2 gphM, the coderivative of M
at (bz; by) (normal coderivative in [28]) is the positive homogeneous mapping
D�M (bz; by) : Y � � Z� de�ned by:

D�M (bz; by) (y�) := fz� 2 Z� : (z�;�y�) 2 N((bz; by) ; gphM)g ; y� 2 Y �;
(5)

where N((bz; by) ; gphM) is the limiting normal cone to gphM at (bz; by) de�ned
in [28, p. 4], and that is given by (3) when gphM is convex. The norm of this
coderivative is de�ned as

kD�M (bz; by)k := sup fkz�k : z� 2 D�M (bz; by) (y�) ; ky�k � 1g : (6)

The notion of coderivative is recognized as a powerful tool of variational analy-
sis when applied to problems of optimization and control (see [22], [28], [29],
and the references therein). In [8] they were applied by the �rst time to analyze
the stability of primal inequality systems in semi-in�nite programming.

According to [20, Theorem 3 ], the convex set-valued mappingM�1 is perfectly
regular at (by; bz) 2 gphM�1 if and only if

surM�1(by; bz) = inf nky�k : y� 2 D�M�1 (by; bz) (z�) ; kz�k = 1o :
IfM�1 is perfectly regular at (by; bz) 2 gphM�1, the following equality holds:

lipM (bz; by) = kD�M (bz; by)k :
In fact we have (see [20] for more details)

lipM (bz; by)= �surM�1(by; bz)��1
=
�
inf

n
ky�k : (z�; y�) 2 gphD�M�1 (by; bz) ; kz�k = 1o��1

=sup
n
ky�k�1 : (z�; y�) 2 gphD�M�1 (by; bz) ; kz�k = 1o

=sup fkz�k : (y�; z�) 2 � gphD�M (bz; by) ; ky�k � 1g
=sup fkz�k : z� 2 D�M (bz; by) (y�); ky�k � 1g :
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3 The feasible set mappings

If we allow for perturbations c� 2 X� and b 2 `1(T ) of the �xed c� and b; we
may consider the perturbed primal and dual problems

P (b; c�) : Sup hc� + c�; xi

s.t.
ha�t ; xi � bt + bt; t 2 T;

x 2 Q;

(7)

and
D (b; c�) : Inf

D
�; b+ b

E

s.t.
A�� 2 c� + c� �Q�;

� � 0:

(8)

In order to study the stability of this dual pair we will consider the feasible
set mappings FP : `1(T )� X and FD : X� � `1(T )

� de�ned as follows:

FP (b) := fx 2 X : Ax � b+ b and x 2 Qg;

and
FD(c�) := f� 2 `1(T )� : A�� 2 c� + c� �Q� and � � 0g :

The corresponding inverse mappings are

F�1
P (x) :=

8><>: Ax� b+ `1(T )+; if x 2 Q;

;; if x =2 Q;

and

F�1
D (�) :=

8><>: A��� c� +Q�; if � � 0;

;; otherwise:

Our main objective in this part of the paper is to characterize the Lipschitz-
like property of FP and FD, which is equivalent to study the metric regularity
of F�1

P and F�1
D at the respective points (0; x) 2 gphFP and (0; �) 2 gphFD;

and to determine both exact Lipschitzian bounds (or regularity modulus).
Throughout the paper the nominal parameters are the zero function b = 0 2
`1(T ) for the primal problem, and the zero functional c� = 0 2 X� for the
dual problem.

It is well-known that this property has important consequences in the overall
stability of any constraint system, as well as in its sensitivity analysis, and it
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a¤ects even the numerical complexity of the algorithms conceived for �nding a
solution of the system. In mathematical programming many authors explored
the relationship of this property with standard constraint quali�cations as
Mangasarian-Fromovitz, Slater, Robinson, etc. A deep study of this important
property and of its consequences can be found in [13],[18], [20], [26], [27], etc.

The following reformulations of the perturbed primal and dual problems will
allow us to apply known results in order to study their stability properties:

P (b; c�) : Sup hc�; xi+ hc�; xi

s.t.
ha�t ; xi � bt + bt; t 2 T;

hq�; xi � 1; q� 2 Q�;

(9)

and

D (b; c�) : Inf
D
�; b

E
+ h�; bi

s.t.
h�;Aqi � hc�; qi+ hc�; qi ; q 2 eQ;
h�; pi � �1; p 2 `1(T )+;

(10)

where eQ is a convenient closed bounded set not containing the null vector and
spanning the cone Q, which will be the general assumption on eQ from now
on.

As usual in convex optimization, the Slater condition is also very important
in the study of the stability of the feasibility of these perturbed problems.

De�nition 1 FP satis�es the strong Slater condition at b 2 `1(T ) if there is
some bx 2 Q such that

sup
t2T

n
ha�t ; bxi � bt � bto < 0: (11)

Any point satisfying condition (11) is a strong Slater point of FP at b:

De�nition 2 FD satis�es the strong Slater condition at c� 2 X� if there is
some b� 2 `1(T )�; b� � 0; such that

inf
q2eQ fhb�;Aqi � hc� + c�; qig > 0: (12)

Such a b� is called a strong Slater point of FD at c�.
It is worth to mention that this second de�nition is independent of the choice
of any particular closed bounded set eQ not containing the null vector and
spanning the cone Q.
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We also say that P (b; c�) satis�es the strong Slater condition at b if there
exists some strong Slater point of FP at b; similarly for D (b; c�).

Notice that 0 =2 cl conv eQ whenever FD satis�es the strong Slater condition
at a point c� 2 X�, and this condition entails that the cone Q is pointed.
Moreover, if eQ is a compact base of Q this condition is also implied by (15).
In this case, observe also that if b� is a Slater point of FD at c� we have that
the in�mum

inf
q2eQ fhb�;Aqi � hc� + c�; qig = inf

q2eQ hA�b�� c� � c�; qi
is attained at some point of eQ and so, it is positive. This is a consequence
of the weak compactness of eQ; and shows that in this case the typical Slater
condition and the strong Slater condition are equivalent.

4 Some duality theory

In this section we provide some speci�c duality results concerning the nominal
problems P � P (0; 0) and D � D(0; 0): Before that we introduce two convex
cones:

a) The �rst one is

H := f(Ax; hc�; xi) : x 2 Qg + `1(T )+ � (�R+); (13)

where `1(T )+ is the positive cone in `1(T ): It can be easily seen that P is
equivalent to the problem

Sup r

s.t. (b; r) 2 H:

b) The second one is

K := (R+ conv
n�
a�t ; bt

�
: t 2 T

o
) + Q� � R+: (14)

Along the paper we use some convenient sets eQ spanning the cone Q; i.e. sets
such that 0 =2 eQ and Q = R+ eQ. In particular, we say that Q has a compact
base eQ if there is some x� 2 X�; kx�k = 1; such that the set

eQ = fq 2 Q : hx�; qi = 1g; (15)

is weakly compact and spans Q: According to the observation in the last
paragraph of p. 85 in [16], eQ is bounded as a consequence of the Banach-
Steinhaus theorem [16, Th. 3.15]. Moreover, when X is re�exive, the fact of
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assuming that Q has a compact base, entails that Q� has nonempty interior
for the topology associated with the dual norm (Theorem 3.16 in [1], see also
[16, Prop 4.36]).

Lemma 1 Suppose that the closed convex cone Q has a compact base eQ. Then
the following statements are equivalent:

(i) There is no z 2 eQ such that Az � 0 and hc�; zi � 0:

(ii) There exists a strong Slater point of FD at 0.

Proof. (ii) ) (i) Reasoning by contradiction, suppose that there existsb� 2 `1(T )�; b� � 0; such that
inf
q2eQ fhb�;Aqi � hc�; qig > 0; (16)

for a certain closed bounded set eQ not containing the null vector and spanning
the cone Q, and suppose that, at the same time, there is z0 2 eQ satisfying
Az0 � 0 and hc�; z0i � 0: From that and b� � 0 we get

hb�;Az0i � hc�; z0i � 0;
contradicting (16).

(i) ) (ii) Take t0 =2 T and de�ne eT := T [ ft0g. Consider then the linear
mapping eA : X ! `1( eT ) such that

eA(x) = (Ax; h�c�; xi);
i.e. � eA(x)� (t) := ha�t ; xi if t 2 T; and � eA(x)� (t0) := h�c�; xi :
The linear mapping eA is bounded and then, continuous. Applying statement
§20.4(5) in [23] (see also Proposition 5 of Ch. 3 of [1]), we know that eA is also
continuous with respect to the weak topologies in X and `1( eT ), and therefore
the image set eA( eQ) is convex and weakly compact. Since (i) can be formulated
as eA( eQ) \ ��`1( eT )+� = ;;
we can apply the strong separation theorem (see, for instance, Theorem 3.17
in [16]) to establish the existence of e� 2 `1( eT )� together with two scalars �
and � such thatDe�; eAqE � � > � � he�; epi ; for all q 2 eQ and all ep 2 �`1( eT )+: (17)

Because e� is �nitely additive on 2eT ; we decompose
e� = (b�; �);
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with b� : 2T ! R bounded and �nitely additive and � := e�(ft0g): In this way,
if S � T; e�(S [ ft0g) = b�(S) + �:
Moreover, if ep 2 `1( eT ), i.e. if ep = (p; �) 2 `1(T )� R, we have

he�; epi = Z
eT epte�(dt) =

Z
T
ptb�(dt) + �� = hb�; pi+ ��: (18)

Now (17) is written as follows

hb�;Aqi � � hc�; qi� � > � � hb�; pi+ ��; (19)

8q 2 eQ and 8(p; �) 2 (�`1(T )+)� (�R+):
We proceed with the following discussion:

(a) Taking into account that (�`1(T )+)�(�R+) is a cone, we can take � = 0:

(b) If � < 0; we can take p = 0 and � > 0, and the last inequality in (19)
would fail; so � � 0:

(b1) If � = 0; (19) gives rise to

hb�;Aqi � � > 0 � hb�; pi ; 8q 2 eQ and 8p 2 �`1(T )+.
Then b� � 0: Since eQ is weakly compact, it will be bounded, which entails the
existence of a constant M such that

jhc�; qij �M; 8q 2 eQ.
By de�ning

b�0 := 2M

�
b�;

we get

hb�0; Aqi � hc�; qi = 2M
�
hb�;Aqi � hc�; qi

� 2M
�
� �M =M > 0; 8q 2 eQ:

(b2) If � > 0; we divide (19) by � and de�ning b�1 := 1
�
b�; one has

hb�1; Aqi � hc�; qi � �=� > 0; 8q 2 eQ.
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To exclude the existence of duality gap (i.e. that vP 6= vD) under certain
assumptions we need the following lemma, which is an adaptation of Theorem
3.17 in [1] and concerns the notion of compact base of a cone.

Lemma 2 If Q has a compact base eQ and there exists a strong Slater b� point
of FD at 0; then the set H is closed.

Now we establish our duality theorem.

Theorem 3 If P is consistent, then the following statements hold:

(i) vP � vD and, if D is also consistent, both values are �nite.

(ii) If vP is �nite, Q has a compact base, and there exists a strong Slater point
of FD at 0; then there is no-duality gap (i.e. vP = vD) and P is solvable.

(iii) If vP is �nite, and the cone K de�ned in (14) is w�-closed, then there is
no-duality gap and D is solvable.

Proof. (i) If P is consistent and D is inconsistent, then vP � +1 = vD. If
both problems are consistent, take x 2 FP and � 2 FD: Since � 2 FD then
� � 0; and there must exist q� 2 Q� such that c� = A��+ q�: The result is a
trivial consequence of the following observation

hc�; xi = hA��; xi+ hq�; xi � hA��; xi = h�;Axi �
D
�; b

E
:

(ii) By Lemma 2 H is closed, and the proof is a mere adaptation of the proofs
of Theorems 3.9 and 3.22 in [1].

(iii) Obviously the inequality hc�; xi � vP is a consequence of the consistent
system

fha�t ; xi � bt; t 2 T ; hq�; xi � 0; q� 2 Q�g;
since Q = Q�� (see, for instance, Theorem 4.32 in [16]). Applying the asymp-
totic Farkas Lemma (Theorem 4.1 in [10]), we get

(c�; vP ) 2 cl�K = K;

and there exist �0 2 R(T )+ ; q0 2 Q�; and �0 � 0 such that

(c�; vP ) =
X
t2T
�0t
�
a�t ; bt

�
+ (q0; �0): (20)

If we consider
�0 :=

X
t2T
�0t �t 2 `1(T )�;

where �t 2 `1(T )� denotes the Dirac measure de�ned by h�t; pi = pt; for any
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p 2 `1(T ); is is easy to see that A��0 =
P
t2T �

0
ta
�
t , and therefore (20) yields

c� = A��0 + q0 and vP =
D
�0; b

E
+ �0:

The �rst equality above shows that �0 is a feasible solution of D; and conse-
quently

vD �
D
�0; b

E
�
D
�0; b

E
+ �0 = vP :

This inequality, together with the weak dual inequality established in (i), gives
vD = vP and shows that �0 is optimal for D:

5 Lipschitzian stability of the primal feasible set mapping

In Cánovas et al. [8] the Lipschitz-like property and the calculus of the exact
Lipschitzian bound for a certain primal feasible set mapping are related to
some characteristic set. In the present setting we need to take into account the
conic constraint x 2 Q as well. Therefore, we de�ne, as in [8], the characteristic
set of FP (b) as the convex subset of X��R spanned by the set of coe¢ cients
of the constraint system:

CP (b) := conv
�n�

a�t ; bt + bt
�
: t 2 T

o
[ (Q� � f1g)

�
: (21)

We observe that
coneCP (0) � R+CP (0) = K;

where K is the cone de�ned in (14), and a closedness condition for the absence
of duality gap is related to this set according to Theorem 3(iii).

We will obtain characterizations of the consistency of the primal problem, and
its Lipschitz-like property, normal cone, coderivative, and exact Lipschitzian
bound; all of these properties being expressed in terms of the given data,
mainly through this characteristic set CP (b). Indeed these properties follow by
taking into account the expression (9) of the primal problem and by an almost
straightforward application of the results established in the just mentioned
paper [8], with the di¤erence that now we need to pay special attention to the
unboundedness of the coe¢ cients of the constraints hq�; xi � 1, and observe
that any x 2 Q satis�es hq�; xi � 0; for all q� 2 Q�, since Q = Q��. In
this way we can easily adapt the proof of Lemma 2.3 in [8] to prove that the
consistency of P (b; c�) is equivalent to (0;�1) =2 cl� coneCP (b) ; and that a
consistent problem P (b; c�) satis�es the strong Slater condition if and only
if (0; 0) =2 cl�CP (b), if and only if b 2 int (domFP ), if and only if FP is
Lipschitz-like around (b; x) for all x 2 FP (b). In the following proposition we
show that if intQ 6= ;; we can add a new condition to the previous list. If X
is re�exive, intQ 6= ; if and only if Q� has a compact base [1, Theorem 3.16].
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Proposition 4 Let FP (b) 6= ;: If intQ 6= ;; then FP is Lipschitz-like around
(b; x) for all x 2 FP (b) if and only if there exists some x 2 X such that
(b; x) 2 int (gphFP ) :

Proof. (() If (b; x) 2 int (gphFP ) ; then b 2 int (domFP ) which is equivalent
to FP being Lipschitz-like around (b; x) for all x 2 FP (b) :

()) Let bq 2 intQ be �xed. NowFP (b) 6= ; andFP being Lipschitz-like around
(b; x) for all x 2 FP (b) gives that FP satis�es the strong Slater condition at
b: If bx 2 Q is any strong Slater point for FP at b; let

sup
t2T

�
ha�t ; bxi � bt � bt� � �# < 0;

for some # > 0. Put
M := sup

t2T
ka�tk < +1

and

� :=
#

6 (1 +M) (kbqk+ 1) > 0;
and observe that bx+�bq 2 intQ. Finally let r > 0 be such that bx+�bq+u 2 Q for
kuk < r: Hence, if u 2 X and b0 2 `1 (T ) are such that kuk < min

n
r; #
6(1+M)

o
and kb0k1 < #

6
; then

ha�t ; bx+ �bq + ui � bt � bt � b0t � ha�t ; bxi+ ka�tk (� kbqk+ kuk)� bt � bt � b0t
� �#+M

 
# kbqk

6 (1 +M) (kbqk+ 1) + #

6 (1 +M)

!
+
#

6

� �#
2
< 0;

for all t 2 T . Therefore (b; x) 2 int (gphFP ) for x = bx+ �bq:
Next we state the most remarkable results about the coderivative and the Lip-
schitz -like property. The proofs are omitted for the sake of brevity. The reader
can also �nd an alternative approach in the recent preprint [19]. With the aid
of the Dirac measures we can characterize the coderivative D�FP (0; bx) (x�) as
the following result shows.

Proposition 5 Let bx 2 FP (0) ; � 2 `1(T )
�; and x� 2 X�. Then � 2

D�FP (0; bx) (x�) if and only if
(�;�x�;�hx�; bxi) 2 cl� �conen���t; a�t ; bt� ; t 2 To+ f0g �Q� � f0g� :

Theorem 6 Let bx 2 FP (0); then FP is Lipschitz-like around (0; bx) if and
only if

D�FP (0; bx)(0) = f0g :
15



Theorem 7 Let bx 2 FP (0): Then,
(i) If bx is a strong Slater point of FP at b = 0; then kD�FP (0; bx)k = 0.
(ii) If bx is not a strong Slater point of FP at b = 0; then kD�FP (0; bx)k > 0
and it can be calculated as

kD�FP (0; bx)k = supnkx�k�1 : (x�; hx�; bxi) 2 cl�CP (0)o : (22)

Remark 1 In case (ii); if the strong Slater condition is not satis�ed at b = 0,
then (0; 0) 2 cl�CP (0) and according to (6), we get kD�FP (0; bx)k =1.
Theorem 8 Let bx 2 FP (0); then

lipFP (0; bx) = kD�FP (0; bx)k : (23)

Remark 2 This result is also a consequence of the perfect regularity of F�1
P

at (bx; 0) which can be proved following an argument similar to the one used
in [19, Proposition 5]. If the strong Slater condition is not satis�ed, then both
terms in (23) are +1.

6 Lipschitzian stability of the dual feasible set mapping

From the dual point of view we will show similar properties as in the previous
section in relation to the Lipschitzian stability of the dual feasible set mapping
FD: Here special care is required since the perturbations hc�; qi on the right
hand side of the dual constraints have some special structure and the theory
developed in [8] does not apply in general.

In this section we will consider �xed a bounded closed set eQ not containing
the null vector and spanning the cone Q:

Now the characteristic set of FD(c�); relative to eQ, is de�ned as the following
convex subset of `1(T )� R:

CD (c
�) := conv

0B@
n
(Aq; hc� + c�; qi) : q 2 eQo
[
n
(p;�1) : p 2 `1(T )+

o
1CA : (24)

Observe that
coneCD (0) � R+CD (0) = H;
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where H is the cone de�ned in (13), and a closedness condition for the absence
of duality gap is related to this set according to Theorem 3(ii) and Lemma 2.
(H does not depend on the choice of eQ.)
6.1 Characterization of stably consistent dual problems

The stability with respect to the consistency of the dual problems will be
analyzed through the mapping FD by noting that a dual problem D (b; c�) is
stably consistent if and only if c�2 int (domFD). Observe that an application of
the classical Robinson-Ursescu theorem ( [18], [28]) implies that this condition
is equivalent to FD being Lipschitz-like around (c�; �) for all � 2 FD (c�) ;
because the graph of F�1

D : `1(T )
� � X� is closed and convex, and `1(T )�

and X� are Banach spaces.

Lemma 9 Given c� 2 X� and the following linear system posed in `1(T )�

�D(c
�) :=

8><>: h�;Aqi � hc
� + c�; qi ; q 2 eQ;

h�; pi � �1; p 2 `1(T )+

9>=>; ; (25)

then

�D(c
�) is consistent (i.e. c� 2 domFD)() (0; 1) =2 clH(c�);

where

H(c�) = f(Ax; hc� + c�; xi) : x 2 Qg + `1(T )+ � (�R+):

(Observe that H(0) = H:)

Proof. It follows directly from Theorem 3.1 in [10].

Proposition 10 Let c� 2 domFD: If we suppose that 0 =2 cl conv eQ , then the
following statements are equivalent:

(i) There is some b� � 0 that is strong Slater for FD at c�.
(ii) (0; 0) =2 cl�CD (c�) :

(iii) c�2 int (domFD)

Proof. (i) , (ii) and (i) ) (iii) are proved following the same arguments
of the proof of Lemma 2.3 in [8] to the system (25) posed in `1(T )

�.

(iii) ) (i) If c�2 int (domFD) then c� + c0� 2 domFD whenever kc0�k � "
for " > 0 small enough. On the other hand, 0 =2 cl conv eQ and the strong
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separation property gives the existence of x� 2 X�; kx�k = 1; and � 2 R such
that

hx�; qi � � > 0 for all q 2 eQ:
Now, for c0� = "x�; there exists b� � 0 such that

hb�;Aqi � hc� + c� + c0�; qi � 0 for all q 2 eQ:
Take any such q 2 eQ. From

hc0�; qi = " hx�; qi � "� > 0

it follows that

hb�;Aqi � hc� + c�; qi � hc0�; qi � "� > 0:
Hence b� � 0 is a strong Slater point of FD at c�:
Remark 3 Observe that the hypothesis 0 =2 cl conv eQ is only needed for the
implication (iii) ) (i). Recall also that the existence of a strong Slater point
implies the condition 0 =2 cl conv eQ. Another important observation is that
indeed condition (ii) (0; 0) =2 cl�CD (c�) is equivalent to (ii)0 (0; 0) =2 clCD (c�) ;
but we prefer to keep the cl� notation because we will always be considering
the w�-topology on `1 (T )

�� :

6.2 Characterization of coderivatives

Let us note that when x�� 2 X and b�� 2 `1(T ) in Proposition 11 and Theorem
13 below, we may replace the weak�-closure by the norm closure because we
are considering the closures of convex sets.

Now we will give a characterization of the normal cone to gphFD at (bc�; b�) :
Proposition 11 Let (bc�; b�) 2 gphFD and let (x��; b��) 2 X�� � `1(T )��:
Then

(x��; b��) 2 N ((bc�; b�) ; gphFD)
if and only if � (x��; b��; hbc�; x��i+ hb�; b��i) belongs to

cl�
n
f(�q; Aq; hc�; qi) : q 2 Qg+ f0g � `1(T )+ � (�R+)

o
: (26)

Proof. The proof follows from the de�nition of N ((bc�; b�) ; gphFD), by taking
18



into account that the set gphFD can be expressed as

gphFD =

8><>:(c�; �) 2 X� � `1(T )� :
h(c�; �) ; (�q; Aq)i � hc�; qi ; q 2 eQ
h(c�; �) ; (0; p)i � �1; p 2 `1(T )+

9>=>; ;
and applying the asymptotic Farkas Lemma (Theorem 4.1 in [10]).

The following lemma will be used in the proof of the next theorem which
provides a characterization of the coderivative of FD at any given (0; b�) 2
gphFD:

Lemma 12 Let b� 2 FD(0); x 2 X�� and b�� 2 `1(T )��: If x�� 2 D�FD(0; b�)(b��)
then there exists a net

f(q� ; p�g�2N � Q� `1(T )+

such that

x�� = w�- lim�2N q� ;

b�� = w�- lim�2N (Aq� + p�) ;

hb�; b��i = lim�2N hc�; q�i :

Moreover, if b� is strong Slater for FD at 0; then x�� = 0:
Proof. Let b� 2 FD(0), x 2 X��; and b�� 2 `1(T )

�� be such that x�� 2
D�FD(0; b�)(b��): From the de�nition of the coderivative given in (5), x�� 2
D�FD(0; b�)(b��) if and only if (x��;�b��) 2 N ((0; b�) ; gphFD), if and only if
(by Proposition 11) (�x��; b��; hb�; b��i) belongs to the set in (26).
Then there exists a net f(q� ; p� ;�
�g�2N � Q� `1(T )+ � (�R+) such that

(�x��; b��; hb�; b��i) = w�- lim
�2N

f(�q� ; Aq� ; hc�; q�i) + (0; p� ;�
�)g : (27)

Clearly
x�� = w�- lim

�2N
q� ;

b�� = w�- lim
�2N

(Aq� + p�) ; (28)

and
hb�; b��i = lim

�2N
(hc�; q�i � 
�): (29)

Applying expression (27) to (0; b�;�1) ; and from hb�; p�i � 0 and b� 2 FD(0),
one gets
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0= lim
�2N

(hb�;Aq� + p�i � hc�; q�i+ 
�)
� lim sup

�2N
(hA�b�; q�i � hc�; q�i+ 
�)

� lim sup
�2N


� � 0:

Hence
lim
�2N


� = 0:

Finally, assume that b� is strong Slater for FD at 0 and let # > 0 be such that
inf
q2eQ fhb�;Aqi � hc�; qig � # > 0:

Then, from (28) and (29),

lim
�2N

hb�;Aq� + p�i = hb�; b��i = lim
�2N

hc�; q�i : (30)

Moreover we can express q� = �� eq� with eq� 2 eQ and �� > 0; for all � 2 N ,
and from (30)

0 = lim�2N fhb�; ��Aeq� + p�i � hc�; �� eq�ig
� lim sup�2N �� (hA�b�; eq�i � hc�; eq�i)

� # lim sup�2N �� :

The fact that # > 0 yields lim�2N �� = 0: Since x�� = w�-lim�2N q� we
obtain, as a consequence of the w�-lower semicontinuity of the norm, and the
boundedness of eQ,

kx��k � lim inf
�2N

k�� eq�k �
0@sup
q2eQ kqk

1A� lim
�2N

��

�
= 0;

which gives x�� = 0:

Theorem 13 Let b� 2 FD(0): If x�� 2 X�� and b�� 2 `1(T )��, then x�� 2
D�FD(0; b�)(b��) if and only if (x��; b��; hb�; b��i) belongs to

cl�
n
f(q; Aq; hc�; qi) : q 2 Qg+ f0g � `1(T )+ � f0g

o
:

Proof. ()) It follows readily from the previous lemma.

(() The de�nition ofD�FD(0; b�)(b��) and Proposition 11 applied to (x��;�b��)
give the result.
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Lemma 14 Given b� 2 FD(0) the following statements hold:
(i) If eQ is bounded and b� is not a strong Slater point of FD at 0; then the set

SD := fb�� 2 `1(T )��j (b��; hb�; b��i) 2 cl�CD (0)g (31)

is non empty and w�-closed. Moreover, if eQ is a compact base of Q, then

fb 2 `1(T ) j(b; hb�; bi) 2 CD (0)g 6= ;:
(ii) If b� is a strong Slater point of FD at 0; then SD = ;:
Proof. (i) If b� is not a Slater point of FD at 0; there exists a sequence
(qk)

1
k=1 � eQ such that

lim
k!1

f� hb�;Aqki+ hc�; qkig = 0: (32)

First suppose kqk � R for any q 2 eQ. Since Aq 2 `1(T ) one has
kAqk��= sup fjh�;Aqij : � 2 `1(T )�; k�k � 1g

= kAqk1
= sup fjha�t ; qij : t 2 Tg
�R sup fka�tk : t 2 Tg ;

for any q 2 eQ. Thus the set fAq; q 2 eQg is bounded in `1(T )��; and then
cl�fAq; q 2 eQg is w�-compact by Alaoglu Theorem. Thus there are a subnet
fqk�g�2N from the sequence fqkgk2N ; and some b�� 2 cl

�fAq; q 2 eQg such
that

lim
�2N

h�;Aqk� i = h�; b��i

for all � 2 `1(T )�. Hence

hb�; b��i = lim
�2N

hb�;Aqk� i = lim
�2N

hc�; qk� i ;

which implies

(b��; hb�; b��i) =w�- lim
�2N

(Aqk� ; hc�; qk� i)

2 cl� f(Aq; hc�; qi) ; q 2 eQg
� cl�CD (0) :

Hence SD is not empty. Furthermore, SD is the preimage of cl
�CD (0) under

the w�-continuous aplication b�� 7! (b�� ; hb�; b�� i) on `1(T )��; so SD is w�-
closed in `1(T )��:
Now assume that eQ is a compact base and put S 0 := fb 2 `1(T )j (b; hb�; bi) 2
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CD (0)g. There exists a subnet (qk� )�2N that weakly converges to some element
q 2 eQ: Then, (32) gives

hb�;Aqi = lim
�2N

hA�b�; qk� i = lim
�2N

hc�; qk� i = hc�; qi ;

and therefore
(Aq; hb�;Aqi) = (Aq; hc�; qi) 2 CD (0) :

Hence,
Aq 2 S 0

and this set is nonempty.
(ii) If b� is a strong Slater point of FD at 0; take # > 0 such that

inf
q2eQ fhb�;Aqi � hc�; qig � # > 0:

For any (b��; �) 2 cl�CD (0) consider nets (��)�2N � R
(eQ)
+ ; (
�)�2N � R

(`1(T )+)
+

such that
P
q2eQ ��q +Pp2`1(T )+ 


�
p = 1 and

(b��; �) = lim
�2N

0B@X
q2eQ�

�
q (Aq; hc�; qi) +

X
p2`1(T )+


�p (p;�1)

1CA : (33)

Without loss of generality suppose that both nets
�P

q2eQ ��q��2N and �Pp2`1(T )+ 

�
p

�
�2N

are convergent. By applying (33) to (b�;�1) we obtain

hb�; b��i � �= lim
�2N

8><>:
X
q2eQ�

�
q (hb�;Aqi � hc�; qi) + X

p2`1(T )+


�p (hb�; pi+ 1)
9>=>;

�# lim
�2N

X
q2eQ�

�
q + lim

�2N

X
p2`1(T )+


�p

> 0;

which gives that (b��; hb�; b��i) =2 cl�CD (0).
Now we will make use of the following condition on the cone Q :

(A): eQ is a closed spanning subset of Q such that there are two positive real
numbers r and R; and some x� 2 X�; kx�k = 1; satisfying

r � hx�; qi � kqk � R (34)

for all q 2 eQ:
Notice that in this case the cone Q is pointed. As an example we may take
any compact base eQ of Q; since eQ is bounded.
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The next theorem gives an estimate of the norm kD�FD(0; b�)k ; which will be
useful for providing an estimate of the exact Lipschitzian bound of the dual
feasible set mapping.

Theorem 15 Suppose that Q satis�es condition (A) and that b� 2 FD(0):
Then,
(i) If b� is a strong Slater point of FD at 0; then kD�FD(0; b�)k = 0.
(ii) If b� is not a strong Slater point of FD at 0; then kD�FD(0; b�)k > 0 and

r� � kD�FD(0; b�)k � R�;
where

� := sup
n
kb��k�1 : (b�� ; hb�; b��i) 2 cl�CD (0)o : (35)

Proof. (i) Assume that b� is a strong Slater point of FD at 0: By Lemma 12,
x�� = 0 when x�� 2 D�FP (0; b�)(b��), thus

kD�FD(0; b�)k = sup fkx��k : x�� 2 D�FD(0; b�)(b��); kb��k � 1g = 0:
(ii) If b� is not strong Slater for FD at 0; SD is not empty and we can take some
b�� 2 SD (31): Then, from the de�nitions (24) and (31), since (b��; hb�; b��i) 2
cl�CD (0) there exist nets f��g�2N � R

(eQ)
+ ; f
�g�2N � R

(`1(T )+)
+ such thatX

q2eQ�
�
q +

X
p2`1(T )+


�p = 1; for all � 2 N ;

and

(b��; hb�; b��i) = w�- lim
�2N

0B@X
q2eQ�

�
q (Aq; hc�; qi) +

X
p2`1(T )+


�p (p;�1)

1CA :
As in the proof of Lemma 12, it follows that

0 = lim
�2N

X
p2`1(T )+


�p;

b�� = w�- lim
�2N

8><>:
X
q2eQ�

�
qAq +

X
p2`1(T )+


�pp

9>=>; ;
and

hb�; b��i = lim
�2N

X
q2eQ�

�
q hc�; qi :

Now, take any �xed q1 2 eQ, and for each � 2N , de�ne
z� :=

X
q2eQ�

�
qq +

0B@1�X
q2eQ�

�
q

1CA q1 2 conv eQ;

23



then

kz�k �
X
q2eQ�

�
qkqk+

0B@1�X
q2eQ�

�
q

1CA kq1k � R:
By Alaoglu Theorem we may consider, without loss of generality, that the
net fz�g�2N is w�-convergent to some z�� 2 X��: Observe that z�� = w�-
lim�2N

P
q2eQ ��qq because lim�2N

P
q2eQ ��q = 1, and so z�� 2 cl�(conv eQ). Then,

by (34), kz��k � r and so, z�� 6= 0:

Now we have

(z��; b��; hb�; b��i) = w�- lim
�2N

0B@X
q2eQ�

�
q (q; Aq; hc�; qi) +

X
p2`1(T )+


�p (0; p; 0)

1CA ;
and so (z��; b��; hb�; b��i) belongs to

cl�
n
f(q; Aq; hc�; qi) : q 2 Qg[

n
(0; p; 0) ; p 2 `1(T )+

oo
:

Hence Theorem 13 gives

z�� 2 D�FD(0; b�)(b��):
Next we consider two cases:

(a) FD does not satisfy the strong Slater condition at 0. In this case (0; 0) 2
cl�CD (0) and we may take b�� = 0; since 0 6= �z�� 2 D�FD(0; b�)(0) for all
� > 0, it follows that

kD�FD(0; b�)k = +1 = sup
n
kb�� k�1 : (b�� ; hb�; b��i) 2 cl�CD (0)o :

(b) FD satis�es the strong Slater condition at 0. If b�� = 0 then (0; 0) 2
cl�CD (0) which contradicts Proposition 10. Hence b�� 6= 0 and

kb��k�1 z�� 2 D�FD(0; b�)(kb��k�1 b��);
so

kD�FD(0; b�)k= sup fkx��k : x�� 2 D�FD(0; b�) (b��1 ) ; kb��1 k � 1g
�



kb��k�1 z��


 : (36)

Moreover, from condition (A),

hx�; z�i � r > 0 for all � 2 N ;

which gives that
hx�; z��i � r > 0;
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and hence
kz��k = sup

kx�k�1
jhx�; z��ij � hx�; z��i � r > 0:

From (36) we obtain

kD�FD(0; b�)k � r kb��k�1 > 0;
which holds for every b�� 2 SD; thus

kD�FD(0; b�)k � r maxnkb��k�1 : (b��; hb�; b��i) 2 cl�CD (0)o :
We can put "max" above because 0 =2 SD and SD is w�-closed, so the w�-upper
semicontinuous function b�� ! kb��k�1 ; restricted to SD; attains a maximum
on it, taking into account that, for any b��0 2 SD; the setn

b�� 2 SD : kb��k�1 � kb��0 k
�1
o

is obviously bounded in `1(T )
��.

To get the other estimate observe that from the de�nitions of coderivative and
normal cone we have

x�� 2 D�FD(0; b�)(0), (x��; 0) 2 N ((0; b�) ; gphFD)
,h(x��; 0) ; (c�; �)� (0; b�)i � 0 for all (c�; �) 2 gphFD
,hx��; c�i � 0 for all c� 2 domFD:

Now, since we are assuming that FD satis�es the strong Slater condition at 0;
Proposition 10(iii) gives that 0 2 int (domFD) ; hence x�� = 0. Thus we have

x�� 2 D�FD(0; b�)(0), x�� = 0:

Therefore kD�FD(0; b�)k is equal to
max f0; sup fkx��k : x�� 6= 0; x�� 2 D�FD(0; b�)(b��); 0 < kb��k � 1gg : (37)
For any x�� 2 D�FD(0; b�)(b��); x�� 6= 0; with 0 < kb��k � 1; b�� 2 `1(T )��;
we can apply Lemma 12 to get the existence of a net

f(eq� ; p� ; ��g�2N � eQ� `1(T )+ � (R+�f0g)
such that

x�� = w�- lim�2N (�� eq�);
b�� = w�- lim�2N (��Aeq� + p�) ;
hb�; b��i = lim�2N hc�; �� eq�i :

(38)
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Observe that
0 < kx��k � lim inf

�2N
k�� eq�k � R lim inf

�2N
�� : (39)

If lim�2N �� = +1, (38) gives rise to (0; 0) 2 cl�CD (0) ; which contradicts
the current assumption that FD satis�es the strong Slater condition at 0. So,

� := lim inf
�2N

�� < +1;

it follows from (39) that � > 0 and, if we suppose that the own net f��g�2N
converges to �, and from (38), we conclude that

(��1b��;
Db�; ��1b��E) 2 cl�CD (0) ;

because for each " > 0 we have

((�+ ")�1b��; hb�; (�+ ")�1b��i)
= w�- lim�2N

n
��
��+"

(Aeq� ; hc�; eq�i) + "
��+"

("�1p� ; 0)
o
;

and so

cl�CD (0) 3 lim
"!0+

"
w�- lim

�2N

(
��

�� + "
(Aeq� ; hc�; eq�i) + "

�� + "
("�1p� ;�1)

)#

=(��1b��;
Db�; ��1b��E) + lim

"!0+

�
w�- lim

�2N

�
0;

"

�� + "

��
=(��1b��;

Db�; ��1b��E):
From 0 < kb��k � 1; and kx��k � R � it follows that

kx��k�R� kb��k�1 = R



��1b��


�1

�Rmax
n
kb��1 k

�1 : (b��1 ; hb�; b��1 i) 2 cl�CD (0)o :
Finally, we conclude from (37) that

kD�FD(0; b�)k � R max
n
kb�� k�1 : (b�� ; hb�; b�� i) 2 cl�CD (0)o :

Remark 4 Notice that, from this proof, if eQ = fq 2 Q : kqk = 1g (the nor-
malized cone) the constant r in this theorem can be obtained from the strong
separation property: since 0 =2 cl convQ2; take any x� 2 X�; kx�k = 1; and
r 2 R such that hx�; qi � r > 0 for all q 2 eQ: If we could choose r = R = 1
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then, in case (b) of the previous proof, we would have the equality

kD�FD(0; b�)k = maxnkb�� k�1 : (b�� ; hb�; b�� i) 2 cl�CD (0)o : (40)

We do not know if any equality holds in (35) in general cases with r 6= R.

Example 1 (Constants r = R = 1). Consider T = N; X = `1 and the closed
convex cone

Q = f(xn) 2 `1 : xn � 0 for all n 2 Ng :
Let 1� be the sequence in `1 = X� whose terms are all equal to 1, and let
e�n; n = 1; 2; :::; be the standard canonical vectors in `1. Then h1�; xi = 1 for
all x 2 eQ := fq 2 Q : kqk1 = 1g ; since k1�k1 = 1; it follows that condition
(A) holds for eQ with r = R = 1: If a�n := �e�n 2 `1; and c� := �1� 2 `1 be
given, then � = 0 is a strong Slater point of FD at 0, while the Dirac measureb� = �1 2 FD(0) is not, hence the equality (40) takes place at (0; b�) = (0; �1).
Example 2 Let X = R2 endowed with the Euclidean norm; T = N; c� =
(0; 1) ; an := (1; 2) for all n; b� = �1: Consider

Q =
n
(x; y) 2 R2 : y � jxj

o
;

and take eQ1 = f(x; y) 2 Q : jxj+ jyj = 1g :
Then h(0; 1) ; (x; y)i = y � 1

2
and k(x; y)k � 1 for all (x; y) 2 eQ1; so we can

take r1 = 1
2
and R1 = 1: (These are the largest r and smallest R we can choose

for eQ1).
Another possibility is to take

eQ2 = f(x; y) 2 Q : y = 2g :
Now r2 = 2 (h(0; 1) ; (x; y)i = y � 2) and R2 = 2

p
2:

We have, for i = 1; 2,

CiD(0; 0) := conv
�n�

(x+ 2y)n2N ; y
�
: (x; y) 2 eQio [ n(p;�1) : p 2 `1 (N)+o� :

In particular,

C2D(0; 0) = conv
�n�

(x+ 4)n2N ; 2
�
: jxj � 2

o
[
n
(p;�1) : p 2 `1 (N)+

o�
:

Then:
(i) max

n
kb�� k�1 : (b�� ; hb�; b�� i) 2 cl�C1D(0; 0)o = 2;

(ii) max
n
kb�� k�1 : (b�� ; hb�; b�� i) 2 cl�C2D(0; 0)o = 1

2
and
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R2 max
n
kb�� k�1 : (b�� ; hb�; b�� i) 2 cl�C2D(0; 0)o = p2;

(iii) kD�FD (0; b�)k = p2;
so kD�FD (0; b�)k = R2 maxnkb�� k�1 : (b�� ; hb�; b�� i) 2 cl�C2D(0; 0)o
< R1 max

n
kb�� k�1 : (b�� ; hb�; b�� i) 2 cl�C1D(0; 0)o ; which implies that some-

times we can have the equality

kD�FD (0; b�)k = R n
kb�� k�1 : (b�� ; hb�; b�� i) 2 cl�CD (0)o ;

but not always.

6.3 Lipschitzian bound for the dual feasible set mapping

Theorem 16 Let b� 2 FD(0) and suppose that 0 =2 cl conv eQ: Then, FD is
Lipschitz-like around (0; b�) if and only if

D�FD(0; b�)(0) = f0g :
Proof. ()) It follows directly from Theorem 1.44 in [28] by taking into
account that gphFD is convex.
(() LetD�

DF(0; b�)(0) = f0g and suppose that FD is not Lipschitz-like around
(0; b�) : Then, by the Robinson-Ursescu theorem and Proposition 10, (0; 0) 2
cl�CD (0) and so there are nets f��g�2N � R(

eQ)
+ ; f
�g�2N � R(`1(T )+)+ such

that X
q2eQ�

�
q +

X
p2`1(T )+


�p = 1; for all � 2 N ;

and

(0; 0) = w�- lim
�

0B@X
q2eQ�

�
q (Aq; hc�; qi) +

X
p2`1(T )+


�p (p;�1)

1CA :
By setting b�� = 0 and by following the same steps as in the proof of (ii) in
the previous Theorem 15, one can obtain z�� 2 X�� such that 0 6= z�� 2
D�
DF(0; b�)(0) = f0g ; which constitutes a contradiction. Therefore FD is

Lipschitz-like around (0; b�) :
Remark 5 We may have D�FD(0; b�)(0) = f0g and FD not Lipschitz-like
around (0; b�) ; if the condition 0 =2 cl conv eQ does not hold. For instance
consider the case of T = ft0g and X = c0 which is the Banach space of
bounded real sequences converging to 0; with the supremum norm. Then X� =
`1 = `1 (N) and X�� = `1 = `1 (N) : Let Q = fq 2 c0 : qn � 0; n 2 Ng andeQ = fq 2 Q : kqk1 = 1g. If a�t0 = c� =

�
1
n!

�1
n=1

2 `1; and by observing that
each ek = (0; :::; 0; 1; 0; :::) ; with ekk = 1 and all other e

k
n = 0; is in eQ, it is easy
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to see that 0 2 cl conv eQ; b� = 1 2 FD(0); and c� = 0 =2 int (domFD) ; which
implies that FD is not Lipschitz-like around (0; 1) : Nonetheless, we can show
that D�FD(0; b�)(0) = f0g : Indeed, if x�� 2 D�FD(0; b�)(0); then by Lemma 12
there exists a net f(q� ; p�g�2N � Q� `1(T )+ such that

x��=w�- lim
�2N

q� ; (41)

0=w�- lim
�2N

(Aq� + p�) ;

0= lim
�2N

hc�; q�i :

From 0 = lim�2N hc�; q�i = lim�2N
P1
m=1

q�;m
m!
; it follows that lim�2N q�;k = 0

for any positive integer k: Now, if x�� = (x��k )
1
k=1; then (41) gives that x

��
k =D

ek; x��
E
= lim�2N

D
ek; q�

E
= lim�2N q�;k = 0: Therefore x�� = 0; and hence

D�FD(0; b�)(0) = f0g.
In order to get an estimate of the exact Lipschitzian bound for FD around
(0; b�); lipFD(0; b�); recall that

lipFD(0; b�) = lim sup
(c�; �)!(0; b�)

dist (�;FD(c�))
dist

�
c�;F�1

D (�)
� :

The extended Ascoli distance formula

dist (�;FD(c�)) = sup
(b��; �)2cl� CD(c�)

[�� h�; b��i]+
kb�� k (42)

holds true when FD satis�es the strong Slater condition at c�, by an straight-
forward application of Lemma 4.3 in [8]. On the other hand we can show a
lower bound for dist

�
c�;F�1

D (�)
�
:

Lemma 17 Suppose that kqk � R for all q 2 eQ. Let c� 2 X� and � 2 `1(T )�
be such that (c�; �) =2 gphFD and F�1

D (�) 6= ;. Then

dist
�
c�;F�1

D (�)
�
� R�1 sup

q2eQ [�h�;Aqi+ hc� + c�; qi]+ > 0: (43)

Proof. Since F�1
D (�) 6= ;; we have that h�p; �i � 1; for all p 2 `1(T )+ and

F�1
D (�) =

n
d� 2 X� j h�;Aqi � hc�; qi � hd�; qi � 0; for all q 2 eQo :

Take any d� 2 F�1
D (�); then (remember that 0 < kqk � R for all q 2 eQ)
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kc� � d�k= sup
kxk�1

jhc�; xi � hd�; xij

� sup
q2eQ

�D
c�; R�1q

E
�
D
d�; R�1q

E�
�R�1 sup

q2eQ (hc�; qi � h�;Aqi+ hc�; qi) :
Furthemore, since c� =2 FD(�) there exists q0 2 eQ such that

�h�;Aq0i+ hc� + c�; q0i > 0:

Therefore

dist
�
c�;F�1

D (�)
�
= inf
d�2F�1D (�)

kc� � d�k

�R�1 sup
q2eQ (�h�;Aqi+ hc� + c�; qi) > 0;

which implies (43).

The next result shows that indeed the situation of the exact Lipschitzian
bound for FD around (0; b�) is similar to that of kD�FD(0; b�)k in Theorem 15.
Theorem 18 Assume condition (A) and let b� 2 FD(0): Then:
(i) If b� is a strong Slater point of FD at 0; then lipFD(0; b�) = 0.
(ii) If b� is not a strong Slater point of FD at 0; then

r� � lipFD(0; b�) � R�;
where

� := sup
n
kb�� k�1 : (b��; hb�; b��i) 2 cl�CD (0)o

Proof. We will split the proof in two cases:
� FD does not satisfy the strong Slater condition at c� = 0: Then (i) cannot
occur, and with respect to (ii) observe that condition (A) and Proposition
10 implies that FD is not Lipschitz-like around (0; b�) and (0; 0) 2 cl�CD (0) :
Hence

lipFD(0; b�) =1 = sup
n
kb��k�1 : (b��; hb�; b��i) 2 cl�CD (0)o :

� FD satis�es the strong Slater condition at c� = 0: In this case another
application of Proposition 10 gives that 0 2 int (domFD) and hence FD is
Lipschitz-like around (0; b�) ; so lipFD(0; b�) < 1: Now choose any sequencen�
c�j ; �j

�o
that converges to (0; b�) ; such that c�j 2 int (domFD) for all j (thus
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FD satis�es the strong Slater condition at c�j as well), and

lipFD(0; b�) = lim
j!1

dist
�
�j;FD(c�j)

�
dist

�
c�j ;F�1

D (�j)
� :

(i) Suppose that b� is a strong Slater point of FD at 0; and let # > 0 be such
that

inf
q2eQ fhb�;Aqi � hc�; qig � # > 0:

Let j be large enough such that



c�j


 < #

4R
; and




b�� �j


 < #
4(1+M)R

; where
M = supt2T ka�tk <1:
If �j does not satisfy the condition �j � 0, then F�1

D (�j) = ; and so

dist
�
�j;FD(c�j)

�
dist

�
c�j ;F�1

D (�j)
� = 0:

In the case when �j � 0, then for any q 2 eQ
D
�j; Aq

E
�
D
c� + c�j ; q

E
= hb�;Aqi � hc�; qi � Db�� �j; AqE� Dc�j ; qE
�#�MR




b�� �j


� 


c�j


R
>
#

2
;

implying that �j 2 FD(c�j) and so dist
�
�j;FD(c�j)

�
= 0: Thus lipFD(0; b�) = 0:

(ii) Suppose that b� is not strong Slater for FD at 0: Since gphFD is convex
we may apply Proposition 1.37 and Theorem 1.44 in [28] to get that

kD�FD(0; b�)k � lipFD(0; b�): (44)

Hence from Theorem 15 we obtain

0 < r max
n
kb�� k�1 : (b�� ; hb�; b�� i) 2 cl�CD (0)o � lipFD(0; b�); (45)

where r is the constant in (34).
Consider a sequence

n�
c�j ; �j

�o
as above with �j =2 FD(c�j) and F�1

D (�j) 6= ;
(which gives �j � 0). From now on the proof follows as the proof of Theorem

4.6 in [8]; actually we need to consider any (b��; �) 2 cl�CD
�
c�j
�
and choose

any net in CD
�
c�j
�
that w�-converges to (b��; �) to show, after some algebra

together with (43), that

��
D
�j; b

��
E

dist
�
c�j ;F�1

D (�j)
� � R:
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Then use this inequality and the Ascoli distance formula (42), to get

dist
�
�j;FD(c�j)

�
dist

�
c�j ;F�1

D (�j)
� � R sup

n
kb��k�1 : (b�� ; �) 2 cl�C+D(c�j ; �j)

o
;

where

C+D(c
�
j ; �j) :=

n
(b��; �) 2 cl�CD

�
c�j
�
: ��

D
�j; b

��
E
> 0

o
;

and, by letting j !1; we obtain

lipFD(0; b�) � lim sup
j!1

R sup
n
kb��k�1 : (b��; �) 2 cl�C+D(c�j ; �j)

o
:

Finally we follow exactly the steps in the cited Theorem 4.6 to get the desired
estimate

lipFD(0; b�) � R max
n
kb��k�1 : (b��; hb�; b��i) 2 cl�CD (0)o ;

which completes the proof in view of (45).

Example 3 An application of this theorem and (44) to the data in Example
2 by taking eQ = eQ2; gives lipFD(0; b�) = p2 because p2 = kD�FD (0; b�)k �
lipFD(0; b�) � R2 maxnkb��k�11 : (b��; hb�; b�� i) 2 clC2Do = p2:
The last theorem in the paper provides an estimate of the diference be-
tween lipFD(0; b�) and kD�FD(0; b�)k which is an inmediate consequence of
the results above, as well as a technical assumption guaranteeing the equal-
ity between both. So, the situation for the dual is much more involved than
in the case of the primal problem where the equality between both con-
stants always holds (Theorem 8) as a consequence of the fact that F�1

P is
a perfectly regular mapping (see Proposition 5 in [19]). The upper bound for
lipFD(0; b�) � kD�FD(0; b�)k given next depends on the cone constraint pro-
vided by Q; and the characteristic set CD (0) corresponding to some special
spanning closed set eQ: This estimate is described in the following corollary.
Theorem 19 In relation to the dual feasible set mapping FD the following
two statements hold:
(i) Assume condition (A) and suppose that FD satis�es the strong Slater
condition at c� = 0: Let b� 2 FD(0); then there are constants r and R; 0 < r �
R; which only depends on the cone Q; such that

0� lipFD(0; b�)� kD�FD(0; b�)k
� (R� r)max

n
kb��k�1 : (b��; hb�; b��i) 2 cl�CD (0)o :
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(ii) If F�1
D (`1(T )

�
+) has nonempty interior for the norm topology in X� and

fq 2 Q : kqk = 1g (46)

is w�-closed in X��; then

lipFD(0; b�) = kD�FD(0; b�)k : (47)

Proof. (i) It is a straightforward consequence of Theorems 15 and 18, and
the fact that kD�FD(0; b�)k � lipFD(0; b�) by (44).
(ii) Remember that F�1

D : `1(T )
� � X� is de�ned through

F�1
D (�) :=

8><>: A��� c� +Q�; if � � 0;

;; otherwise:

Since gphF�1
D is convex and we are assuming that F�1

D (`1(T )
�
+) has nonempty

interior for the norm topology in X�, we may apply Proposition 5 in [20] to
see that this mapping is perfectly regular and so, (47) holds.

Observe that the set fq 2 Q : kqk = 1g = Q \ fx�� 2 X�� : kx��k = 1g is
w�-compact in X�� by Alouglu theorem.

Suppose that b� 2 FD(0) and take (b��; x��) 2 `1(T )�� �X�� such that

S(gphF�1D )�(b�;0)(b��; x��) =:M < +1 and kx��k = 1; (48)

where S(gphF�1D )�(b�;0) is the support function of the convex set (gphF�1
D ) �

(b�; 0):
Since 0 2 F�1

D (b�) there must exist bq� 2 Q� such that
0 = A�b�� c� + bq�;

and the �rst condition in (48) reads

h�� b�; b��i+ hA�(�� b�) + q� � bq�; x��i �M for all � � 0 and all q� 2 Q�:

Taking � = b� yields
hq�; x��i � hbq�; x��i for all q� 2 Q�;

i.e,

x�� 2 Q�� \ fx�� 2 X�� : kx��k = 1g = Q \ fx�� 2 X�� : kx��k = 1g;

and Proposition 5 in [20] applies.
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Remark 6 Condition (46) is automatically satis�ed if X is the Euclidean
space. In the in�nite-dimensional setting, (46) also holds for instance when
X is re�exive and Q is �nite-dimensional (for instance, �nitely generated).
Also in this case, F�1

D (`1(T )
�
+) has nonempty interior for the norm topology

in X� when intQ� is non-empty, and this is implied by the existence of a
compact base for Q:

Example 4 Revisiting Example 1 where r = R = 1, we can conclude from
part (i) of this last theorem that lipFD(0; b�) = kD�FD(0; b�)k :
Example 5 This example shows that the equality (47) may hold even when
r 6= R and the set (46) is not w�-closed in X��. Consider X = c0 the Banach
space of bounded real sequences converging to 0; with the supremum norm.
Then X� = `1 = `1 (N) and X�� = `1 = `1 (N) : Let

Q = fq 2 c0 : 2q1 � qn � 0; n 2 Ng and eQ = fq 2 Q : kqk1 = 1g ;
1�=(1)1n=1 2 cl � eQ; so this set eQ is not w�-closed in `1: Furthermore when-
ever q 2 eQ; then qn = 1 for at least one n 2 N, and 1

2
� q1 � 1. If x� = e1 :=

(1; 0; :::; 0; :::) 2 `1, then hx�; qi = q1 � 1
2
for any q 2 eQ: Indeed r = 1

2
is the

largest r we can choose to satisfy hz�; qi � r for some z� 2 `1; kz�k1 = 1; and
for all q 2 eQ; because for qk 2 eQ; k 2 N; k 6= 1; de�ned by qk1 = 1

2
; qkk = 1;

and qkn = 0 otherwise, it holds that
D
z�; qk

E
= z�1

1
2
+ z�k ! z�1

1
2
� 1

2
: Now con-

sider T = ft0g and put a�t0 := a� =
�
�1
2n�1

�1
n=1

2 `1; also �x c� = a�: Observe
that `1 (T ) = `1 (T )

� = `1 (T )
�� = R: Then � = 0 is a strong Slater point

for FD at c� = 0; while b� = 1 2 FD (0) is not strong Slater. The characteristic
set is given by

CD (0) = conv

0B@
n
(ha�; qi ; ha�; qi) : q 2 eQo
[f(p;�1) : p 2 R; p � 0g

1CA � R2 ;
and by taking into account that �2 � �q1 � 1 � ha�; qi � �q1 � �1

2
for any

q 2 eQ; an application of Theorem 15 gives

kD�FD(0; b�)k � sup nkb�� k�1 : (b��; hb�; b��i) = (b��; b��) 2 cl�CD (0)o = 2:
(49)

(Here R = 1). Also lipFD(0; b�) � 2 because of Theorem 18. On the other
hand, from Theorem 13 we can see that for each k 2 N; k 6= 1; qk de�ned by

qk1 = 1�
1

2k�1
; qkk+1 = 2q

k
1; and q

k
n = 0 otherwise,

belongs to D�FD(0; b�) �bk� ; where bk := D
a�; qk

E
: Since

���bk��� = ���Da�; qkE��� =
1� 1

2k(k�2)
< 1; we obtain that
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kD�FD(0; b�)k= sup fkz�k : z� 2 D�FD(0; b�) (b�� ) ; kb�� k � 1g
�



qk


 = 


qk




1
= 2

�
1� 1

2k�1

�
:

By letting k ! 1 and in view of (49), it follows that kD�FD(0; b�)k = 2.
Finally, by (44) kD�FD(0; b�)k � lipFD(0; b�) � 2, therefore we obtain the
equalities kD�FD(0; b�)k = lipFD(0; b�) = 2:
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